8.11 普通差别等价(ODEs)
Section outline
-
A differential equation is an equation that involves a dependent variable and its with respect to one or more independent variables. There are many, many relationships in almost every area of daily life, and especially in biology, economics, engineering and physics applications, that can be expressed as a differential equation. The differential equation and its solution provide a mathematical model of the relationship. For example, the differential equation that expresses the well known Malthusian law of population growth of an organism in ideal conditions is expressed as: the rate at which a population size p changes with respect to time t is directly proportional to the population. Can write the differential equation? Can you find the general solution to the differential equation? Note that this same differential equation also describes many other relationships in other fields, e.g., the decay of radioactive elements.
::差异方程式是一个包含一个依赖变量的方程式,它涉及一个或一个以上独立变量。在日常生活的几乎每个领域,特别是在生物学、经济学、工程学和物理应用方面,都存在许多可以以差异方程式表示的关系。差异方程式及其解决办法提供了一个关系数学模型。例如,表达一个有机体在理想条件下人口增长的众所周知的马尔图西亚法律的差别方程式,其表达方式是:相对于时间t而言,人口规模变化的速度与人口直接成比例。能够写差异方程式吗?您能否找到差异方程式的一般解决办法?注意到,这个相同的差异方程式也描述了其他领域的许多其他关系,例如放射性元素的衰变。Ordinary Differential Equations
::普通分配等价A differential equation (DE) can be identified as one of two types: it is either an ordinary differential equation (ODE), our focus here, or a partial differential equation (PDE).
::差别方程(DE)可被确定为两类中的一种:要么是普通差别方程(ODE)、我们在此的重点,要么是部分差别方程(PDE)。Ordinary vs Partial Differential Equation
::普通和部分差别等同An Ordinary Differential Equation (ODE) is a differential equation containing (ordinary) derivatives of a function y = f ( x ) which has only one independent variable x .
::普通差异方程式(ODE)是一个差异方程,包含函数y=f(x)的(普通)衍生物,只有一个独立的变量 x。Note that “Ordinary” derivatives are the derivatives presented in these concepts.
::请注意,“普通”衍生物是这些概念中提出的衍生物。A Partial Differential Equation (PDE) is a differential equation containing derivatives of a function y which has more than one independent variable.
::部分差异方程(PDE)是一个差异方程,包含函数y的衍生物,该函数y有一个以上的独立变量。Again, we will only be considering ordinary differential equations (ODE) in this and subsequent concepts.
::同样,我们在此和随后的概念中只考虑普通的差别方程式。The order of an ODE is the highest order derivative in the equation. For example, the ODE y ′ ′ + x y ′ + y = sin x is a 2 nd -order ODE.
::ODE 的顺序是方程式中最高顺序的衍生物。例如, ODE yxy=sinx 是一个第二顺序的 ODE 。An ODE can be expressed in an explicit form or an implicit form as follows:
::守则可以以明示形式或默示形式表述如下:-
Explicit form: The DE can be structured to look like
%7D%20%3D%20F(x%2C%20y%2C%20y%5E%5Cprime%2C%20y%5E%7B%5Cprime%5Cprime%7D%20%5Cldots%20y%5E%7B(n-1)%7D)">
y
(
n
)
=
F
(
x
,
y
,
y
′
,
y
′
′
…
y
(
n
−
1
)
)
, where the highest order derivative
%7D">
y
(
n
)
is explicitly expressed as a function
F
of the independent variable
x
, the dependent variable
y
, and the lower order derivatives of
y
. It is not always possible to write an ODE in
explicit
form.
::明确的形式: DE 的结构可以像 y= F(x,y,y),y
y
-1) 一样,其中最高顺序的衍生 y
y
被明确表述为独立变量 x 的函数 F, 依附变量 y, y 的较低顺序的衍生 y。 无法总是以明确的形式写入 ODE 。
-
Implicit form: The DE can only be structured to look like
%7D)%20%3D%200">
F
(
x
,
y
,
y
′
,
y
′
′
…
y
(
n
)
)
=
0
, where the function
F
includes all the applicable ordinary derivatives. This is the
implicit
form of the ODE.
::隐含形式 : DE 的结构只能像 F(x,y,y,y,y...y)=0, 函数 F 包括所有适用的普通衍生物。 这是 ODE 的隐含形式 。
Consider the ODE: y ′ ′ + x y = 0 . Because the ODE can also be written as y ′ ′ = − x y ′ , it has the form y ( 2 ) = F ( x , y , y ′ ) , where the highest order derivative, n = 2 , explicitly equals a function of x , y and y ′ . This is called an explicit ODE . An ODE that cannot be made explicit is an implicit ODE .
::考虑 ODE : yxy=0。 因为 ODE 也可以写成 yxy , 它有 y(2) = F(x,y,y) 的形式, 其中最高顺序的衍生物, n=2 明确等于 x,y 和 y 的函数。 这被称为 明示的 ODE 。 无法明示的 ODE 是 隐含的 ODE 。ODEs are also distinguished by whether they are linear or nonlinear as defined below.
::如下文所定义的那样,数字数字交换器是线性还是非线性,对数字交换器也加以区分。Linear vs Non-linear Ordinary Differential Equation
::线性对非线性普通差别等式An ODE %7D%20%3D%20F(x%2C%20y%2C%20y%5E%5Cprime%2C%20y%5E%7B%5Cprime%5Cprime%7D%20%5Cldots%20y%5E%7B(n-1)%7D)"> y ( n ) = F ( x , y , y ′ , y ′ ′ … y ( n − 1 ) ) is a linear ODE if F can be written as a linear combination of the derivatives of y , i.e.
::oDE y= F(x,y,y,y,y...y(n-1)) 是一个线性 ODE, 如果可以将 F 写成y
的衍生物的线性组合, 即 y
。
%7D%20%3D%20%5Csum%5E%7Bi%3Dn-1%7D_%7Bi%3D0%7D%20a_i%20(x)%20y%5E%7B(i)%7D%20%2B%20r(x)."> y ( n ) = i = n − 1 ∑ i = 0 a i ( x ) y ( i ) + r ( x ) .
::y=i=n-1i=0ai(x)y(i)+r(x)。
Note that y ( 0 ) = y .
::注意y(0)=y。If all a i ( x ) are real constants: the ODE is linear, constant coefficient .
::如果 Ai(x) 全部为实际常数: ODE 是线性、 恒定系数 。If r ( x ) = 0 : the ODE is a linear, homogeneous ODE;
::如果 r(x)=0: ODE 是线性、同质的 ODE;If r ( x ) ≠ 0 : the ODE is a linear nonhomogeneous ODE.
::如果 r(x) @%%0 : ODE 是线性非对等的 ODE 。A non-linear ODE is a n ODE that is not a linear ODE.
::非线性 ODE 是指不是线性 ODE 的 ODE 。Consider the ODE y ′ ′ + ( y ′ ) 2 + y = x . It is an explicit 2nd order ODE. In addition, the ODE has a nonlinear term because the first derivative is raised to the power of two. This ODE is therefore called an explicit, 2 nd order, nonlinear ODE. Because there is also a term that only includes the independent variable x , this ODE is also nonhomogeneous. If there is no term that only includes the independent variable, then the ODE is homogeneous.
::考虑 ODE y2+y=x。 这是一个明确的第二顺序 DED。 此外, ODE有一个非线性术语, 因为第一个衍生物被提升到两个。 因此, 这个ODE 被称为一个明确的, 第二顺序, 非线性 ODE 。 因为还有一个术语只包括独立的变量 x, 这个 ODE 也是不对等的。 如果没有术语只包括独立的变量, 那么ODE 是同质的 。
Using the information above, for each of the following ordinary differential equations, identify the order of the equation, and whether it is explicit or implicit, linear (constant coefficient, homogeneous?) or nonlinear, or autonomous :
::使用上述信息,对下列每个普通差分方程,标明方程的顺序,以及该方程是明示的还是默示的、线性(恒定系数、同质系数? )还是非线性或自主的:-
d
d
t
s
(
t
)
=
v
0
+
a
t
-
d
d
t
s
(
t
)
=
v
0
+
a
t
is an explicit, 1
st
-order linear, constant coefficient ODE.
::ddts(t) =v0+at 是直线、 一阶线性、 恒定系数 ODE 。
::ddts(t) =v0+at ddts(t) =v0+at是一个直径、一阶线性、恒定系数ODE。 -
d
d
t
s
(
t
)
=
v
0
+
a
t
is an explicit, 1
st
-order linear, constant coefficient ODE.
-
y
′
′
+
(
y
′
)
2
+
y
=
x
-
If
y
is only a function of
x
,
y
′
′
+
(
y
′
)
2
+
y
=
x
can be written as
y
′
′
=
−
(
y
′
)
2
−
y
+
x
and is an explicit, 2
nd
-order, nonlinear ODE.
::如果 Y 只是一个函数, y2+y=x 可以写成 Asy
2-y+x , 并且是一个直线、 第二顺序、 非线性 ODE 。
::y2+y=x 如果 yis 仅是一个函数 x,y
2+y=x 可以写成 Asy
2-y+x, 并且是一个直线、 2nd- 顺序、 非线性 ODE 。
-
If
y
is only a function of
x
,
y
′
′
+
(
y
′
)
2
+
y
=
x
can be written as
y
′
′
=
−
(
y
′
)
2
−
y
+
x
and is an explicit, 2
nd
-order, nonlinear ODE.
-
P
′
(
t
)
=
k
P
(
t
)
[
M
−
P
(
t
)
]
-
P
′
(
t
)
=
k
P
(
t
)
[
M
−
P
(
t
)
]
is an explicit, 1
st
-order, nonlinear ODE.
::P(t)=kP(t)[M-P(t)]是一个明确的、第1顺序的非线性 ODE。
::P_(t)=kP(t)[M-P(t)] P_(t)=kP(t)[M-P(t)]是一个明确的、第一级、非线性ODE。 -
P
′
(
t
)
=
k
P
(
t
)
[
M
−
P
(
t
)
]
is an explicit, 1
st
-order, nonlinear ODE.
-
y
′
′
′
+
3
y
′
′
+
y
′
=
y
−
x
-
y
′
′
′
+
3
y
′
′
+
y
′
=
y
−
x
can be written as
y
′
′
′
=
−
3
y
′
′
−
y
′
+
y
−
x
, and is an explicit, 3
rd
-order, linear constant coefficient ODE.
::y y y y -x可以写成 asy 3 y y y y y -x, 是一个清晰的, 3级, 线性恒定系数 。
::也可以写成“Asy”3-y-y-x,是一个直线、第3级、线性恒定系数数。 -
y
′
′
′
+
3
y
′
′
+
y
′
=
y
−
x
can be written as
y
′
′
′
=
−
3
y
′
′
−
y
′
+
y
−
x
, and is an explicit, 3
rd
-order, linear constant coefficient ODE.
-
x
3
(
y
′
′
)
2
+
y
′
+
y
=
x
-
x
3
(
y
′
′
)
2
+
y
′
+
y
=
x
is an implicit, 3
rd
-order, nonlinear ODE.
::x32+yy=xIs 隐含的,第3级,非线性ODE。
::x32+yy=xxx3
2+yy=x 隐含的,第3级,非线性ODE。
-
x
3
(
y
′
′
)
2
+
y
′
+
y
=
x
is an implicit, 3
rd
-order, nonlinear ODE.
Solutions to Ordinary Differential Equations
::普通差异等式解决方案It is generally hard to find the solution of differential equations. Because there are very few methods of solving nonlinear differential equations exactly, graphical and numerical methods are often used, as we will see in later concepts. In some cases, an analytical method works, and in the best case, y has an explicit formula in x .
::通常很难找到差异方程式的解决方案。 由于准确解决非线性差异方程式的方法很少,因此经常使用图形和数字方法,我们在以后的概念中可以看到这一点。 在某些情况下,分析方法是有效的,在最好的情况下,y在 x 中有一个明确的公式。Because there are so many forms of ordinary differential equations, we will simplify the discussion on finding solutions by focusing on 1 st -order ODEs. In this case the ODE can be written as follows: y ′ = F ( x , y ) . and the following categories can be distinguished:
::由于存在如此多的普通差异方程式,我们将通过侧重于第1级代码来简化关于寻找解决办法的讨论。 在这种情况下,代码可以写成如下:yF(x,y),以下类别可以区分:1 st -order ODE
::第1级Comment
::注释注释注释注释ODE
::数字Solution Form
::解决方案形式Case 1: d y d x = F ( x , y ) = F ( x )
::案例1: dydx=F(x,y)=F(x)F ( x , y ) is only a function of x .
::F(x,y) 只是 x 的函数 。y = ∫ F ( x ) d x + C
::yF(x)dx+CCase 2: "> d y d x = F ( x , y ) = F ( y )
::案例2: =F(x,y)=FF ( x , y ) is only a function of y .
::F(x,y)只是y的函数。(an autonomous ODE)
:自主的ODE)
%7D%3D%20x%2BC"> ∫ d y F ( y ) = x + C
::@ dyF=x+C
Case 3: "> d y d x = F ( x , y ) = f ( x ) g ( y ) , or
::案例3:uddx=F(x,y)=f(x,y)=f(x)g,或
%7D"> d y d x = F ( x , y ) = f ( x ) g ( y ) , or
::uddx=F(x,y)=f(x)g,或
%7D%7Bf(x)%7D"> d y d x = F ( x , y ) = g ( y ) f ( x )
::uddx=F(x,y)=gf(x)
F ( x , y ) is separable as a product or a quotient.
::F(x,y)作为一种产品或商数可以分开。%7D%20%3D%20%5Cint%20f(x)%20dx"> ∫ d y g ( y ) = ∫ f ( x ) d x
:y)f(x)dx
%20dy%20%3D%20%5Cint%20f(x)%20dx"> ∫ g ( y ) d y = ∫ f ( x ) d x
::*gdy*f(x)dx
%7D%20%3D%20%5Cint%20%5Cfrac%7Bdx%7D%7Bf(x)%7D"> ∫ d y g ( y ) = ∫ d x f ( x )
:y)dxf(x)
Case 4: d y d x = F ( x , y )
::案例4:dydx=F(x,y)F ( x , y ) is not one of the above.
::F(x,y)不是上述内容之一。No specific form
::无具体形式Case 1
::案件1 案件1We begin the analytic solutions of differential equations with a 1 st -order differential equation where F ( x , y ) is a function of x only: d y d x = f ( x ) .
::我们用第一级差异方程式开始分析差异方程式的解析解决方案,F(x,y)只是x的函数:uddx=f(x)。The solution can be determined as follows:
::解决办法可以确定如下:d y d x = f ( x ) d y = f ( x ) d x ∫ d y = ∫ f ( x ) d x y = ∫ f ( x ) d x + C
::uddx=f(x)dy=f(x)dx*}*dy*}*f(x)dxy}*f(x)dx+CTo obtain a solution, it is necessary to determine the anti-derivative of f ( x ) . The constant of integration C can be determined if there is initial value information.
::为了找到解决办法,必须确定f(x)的抗衍生物。 如果有初始价值信息,可以确定整合C的常数。A general solution to a linear ODE is a solution containing a number of arbitrary variables (equal to the order of the ODE) corresponding to the constants of integration . A particular solution is derived from the general solution by setting the constants of integration to values that satisfy the initial value conditions of the problem.
::线性 ODE 的一般解决办法是一种解决办法,它包含一些任意的变量(相当于 ODE 的顺序),与整合的常数相对应,一种特定的解决办法来自一般解决办法,即将整合的常数设定为满足问题最初价值条件的数值。To practice, let's solve the differential equations:
::为了实践,让我们解决差别方程式:-
d
y
d
x
=
x
, for the general solution; for the particular solution with
y
(
0
)
=
1
;
::dydx=x,用于一般解决方案;用于y(0)=1的特殊解决方案; -
d
y
d
x
=
√
9
−
x
2
, for the general solution; for the particular solution with
y
(
0
)
=
3
.
:d) y(0)=3的特殊解决方案。
For d y d x = x , the general solution is
::对于 dydx=x, 通用解决方案是y = ∫ x d x = x 2 2 + C .
::yx dx=x22+C。The initial value y ( 0 ) = 1 means
::初始值y(0)=1 表示1 = 0 2 + C , so that C = 1 .
::1=02+C,所以C=1。The particular solution is therefore y = x 2 2 + 1 .
::因此,特定的解决方案是y=x22+1。For d y d x = √ 9 − x 2 ,
::对于 dydx9 -x2,y = ∫ √ 9 − x 2 d x = ∫ √ 9 − ( 3 sin θ ) 2 3 cos θ d θ … Using trig substitution with x = 3 sin θ , d x = 3 cos θ d θ . = 9 ∫ cos 2 θ d θ = 9 ∫ 1 2 [ 1 + cos 2 θ ] d θ = 9 2 [ θ + sin 2 θ 2 ] + C = 9 2 [ sin − 1 ( x 3 ) + x 9 √ 9 − x 2 ] + C … Use θ = sin − 1 ( x 3 ) , cos θ = 1 3 √ 9 − x 2 , and sin 2 θ = 2 sin θ cos θ .
::y9 -x2dx9 -(3sin})23csd...使用 x=3sin,dx=3cosd。=9cos2d912[1+cos2]d92[1+cos22]+C=92[sin1(x3)+x99-x2]+C...使用sin-1(x3),cos139-x2,和sin22sincos。The general solution is y = 9 2 [ sin − 1 ( x 3 ) + x 9 √ 9 − x 2 ] + C .
::一般解决办法是y=92[sin-1(x3)+x9(9)-x2]+C。The particular solution is based on satisfying the condition y ( 0 ) = 3 :
::特定溶液基于满足条件y(0)=3:y ( 0 ) = 3 = 9 2 [ sin − 1 ( 0 3 ) + 0 9 √ 9 ] + C means that C = 3 .
::y(0)=3=92[sin-1(03)+09/9]+C 表示C=3。The particular solution is y = 9 2 [ sin − 1 ( x 3 ) + x 9 √ 9 − x 2 ] + 3 .
::特定的溶液是y=92[sin-1(x3)+x9-9-x2]+3。Case 2 (Autonomous ODE)
::案件2(ODE自治)Next we look at a 1 st -order differential equation where F ( x , y ) is a function of y only: "> d y d x = f ( y ) . This is called an autonomous 1 st order ODE.
::接下来我们看一阶差方程, F( x,y) 只有y 的函数: dydx=f。 这被称为自动一阶 DEO 。
The solution can be determined as follows:
::解决办法可以确定如下:%5C%5C%0A%5Cfrac%7Bdy%7D%7Bf
%7D%20%26%20%3D%20dx%5C%5C%0A%5Cint%20%5Cfrac%7Bdy%7D%7Bf
%7D%20%26%20%3D%20%5Cint%20dx%5C%5C%0A%5Cint%20%5Cfrac%7Bdy%7D%7Bf
%7D%20%26%20%3D%20x%2BC"> d y d x = f ( y ) d y f ( y ) = d x ∫ d y f ( y ) = ∫ d x ∫ d y f ( y ) = x + C
::dydx=fdyf
=dxdyf
=dx{dx}=x+C
It is necessary here to evaluate the integral %7D"> ∫ d y f ( y ) to obtain a solution.
::在此,有必要评估一个整体,以便找到解决办法。
Let's apply the information above to solve the differential equation y ′ = 3 y , for the general solution; for the particular solution with y ( 0 ) = 10 ;
::让我们应用上面的信息来解析 y3y 的差别方程, 用于一般解决方案; 对于y( 0) = 10 的特殊解决方案 ;d y d x = 3 y d y y = 3 d x ∫ d y y = 3 ∫ d x ln y = 3 x + C y = K e 3 x … K is the constant of integration.
::didx=3ydyy=3dxdyy=3dxlny=3xCy=Ke3xK 是整合的常数 。The general solution is y = K e 3 x .
::一般解决方案是 y= Ke3x 。The particular solution is based on satisfying the condition y ( 0 ) = 10 :
::特定溶液基于满足条件y(0)=10:y ( 0 ) = 10 = K e 3 ⋅ 0 = K .
::y(0)=10=KE30=K。The particular solution is y = 10 e 3 x .
::特定的溶液是y=10e3x。In the next concept we will look at visual ways to help obtain solutions to ordinary differential equations.
::在下一个概念中,我们将研究视觉方法,帮助找到解决普通差别方程式的办法。Examples
::实例Example 1
::例1Earlier, you were asked to write the differential equation that expresses the well known Malthusian law of population growth of an organism: the rate at which a population size p changes with respect to time t is directly proportional to the population. Can you find the general solution to the differential equation?
::早些时候,您被要求写下表达已知的马尔图西亚生物人口增长法的差别方程式:相对于时间 t , 人口规模变化的速度与人口直接成比例。 您能否找到差别方程式的一般解决方案 ?-
The differential equation is:
d
p
d
t
=
r
p
, where
r
is the proportionality constant.
::差别方程是: dpdt=rp, r为相称性常数。 -
The above linear differential equation can be rearranged to
d
p
p
=
r
d
t
, so that
∫
d
p
p
=
∫
r
d
t
, and
ln
p
=
r
t
+
C
, or
p
=
K
e
r
t
.
::以上线性差分方程式可重新排列为 dpp=rdt, 以便dpprdt, 和 Inp=rt+C, 或 p=Kert 。
Example 2
::例2Consider the ODE: y ′ ′ + y = 0 . What kind of ODE is this? Show that the general solution has the form y g = A cos x + B sin x , where A , B are real numbers. Then, find the particular solution given the initial conditions y ( 0 ) = 0 , y ′ ( 0 ) = 5
::考虑 ODE: yy=0。 这是什么类型的 ODE? 显示一般解决方案有 yg= Acosx+Bsinx 的形式, A, B 是真实数字。 然后, 找到特定解决方案, 以初始条件 y( 0) = 0, y( 0) =5The equation is a 2 nd -order, linear constant coefficient, homogeneous ODE.
::等式是第2级,线性常数系数,同源数。If y g = A cos x + B sin x ,
::如果 Yg = Acosx+Bsinx,then y g ′ = − A sin x + B cos x and y g ′ ′ = − A cos x − B sin x .
::然后是ygAsinx+Bcosx和ygAcosx-Bsinx。This means that y g ′ ′ + y g = 0
::这意味着ygyg=0For y = A cos x + B sin x , the initial conditions are evaluated as follows:
::Y=Acosx+Bsinx的初始条件评估如下:y ( 0 ) = 0 = A cos 0 + B sin 0 = A
::y( 0) = 0= Acos0+Bsin0= Ay ′ ( 0 ) = 5 = B cos 0 = B
::y`(0)=5=Bcos0=BThe particular solution is therefore y = 5 sin x .
::因此,特定的解决方案是y=5sinx。Review
::回顾For #1-5, identify the order, and whether the ODE is explicit or implicit, linear (constant coefficient, homogeneous?) or nonlinear, or autonomous.
::对于 # 1-5, 请标明顺序, 以及代码是直线的还是隐含的, 线性( 恒定系数, 均匀的? ) 或非线性, 还是自主的 。-
d
x
d
t
=
k
(
A
−
x
2
)
::dxdt=k( A- x2) -
This ODE can be associated with the rate at which a single chemical combines to make a new chemical:
d
2
y
d
x
2
=
C
L
√
(
A
C
L
)
2
+
(
d
y
d
x
)
2
::此 ODE 可与一种化学品结合生成一种新化学品的速率: d2ydx2=CL(ACL)2+(ddx)2 -
The graph of this solution is associated with an inverted catenary curve:
m
d
2
x
d
t
2
+
a
d
x
d
x
+
k
x
=
G
(
t
)
::此解决方案的图形与一个倒向催化曲线相关联: md2xdt2+adxdx+kx=G(t) -
This ODE can be used to model the motion of a damped mass-spring system subject to a time varying force:
E
⋅
l
⋅
d
4
y
d
x
4
=
w
(
x
)
::该 ODE 可用于模拟按时间变化力( Eld4ydx4=w(x)) 限制的堆积质源系统运动。 -
This ODE can be used to model the vertical displacement of a point a distance
x
from the fixed end of a beam of uniform cross-section due to a load
w
(
x
)
:
x
2
y
(
y
(
5
)
)
3
+
2
x
3
y
4
(
y
′
′
)
5
=
sin
3
(
x
2
)
::由于一个负载(x) : x2y(y(5))3+2x3y45=sin3(x2) =sin3(x2)
For #6-10, solve the differential equaitons.
::6 -10,解决差缝-
Solve
y
′
=
e
2
x
.
::解决你2x。 -
Solve
y
′
=
2
x
cos
(
x
2
)
.
::解决 y2xcos(x2) 。 -
Solve
y
′
=
8
x
3
.
::解决你8x3。 -
Solve
y
′
=
x
e
x
2
.
::解决你xex2。 -
Solve
y
′
=
4
x
ln
(
x
)
.
::解决 y4xln(x) 。 -
Let
y
=
−
cos
(
π
x
+
C
)
+
1
be a general solution to an ODE with initial condition
y
(
0
)
=
3
2
. What is the particular solution?
::让 ycos( xx+C)+1 成为初始状态为 Y( 0) = 32 的 ODE 的一般解决方案。 具体解决方案是什么 ? -
What is the general solution for the ODE
y
=
y
′
?
::对于ODE y`y',一般解决办法是什么? -
Is the function
y
=
e
x
sin
(
x
)
a solution to the ODE
y
′
−
2
y
=
0
?
::函数 Y=exsin( x) 是 ODE y2y=0 的解决方案吗 ? -
Can you think of a general solution to the ODE
y
=
−
y
′
′
(hint: try simple functions)? What about a second? A third?
::您能想出一个解决 ODE y y (hint: try simple 函数) 的通用解决方案吗? 那么第二个呢? 第三个呢 ?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Explicit form: The DE can be structured to look like
%7D%20%3D%20F(x%2C%20y%2C%20y%5E%5Cprime%2C%20y%5E%7B%5Cprime%5Cprime%7D%20%5Cldots%20y%5E%7B(n-1)%7D)">
y
(
n
)
=
F
(
x
,
y
,
y
′
,
y
′
′
…
y
(
n
−
1
)
)
, where the highest order derivative
%7D">
y
(
n
)
is explicitly expressed as a function
F
of the independent variable
x
, the dependent variable
y
, and the lower order derivatives of
y
. It is not always possible to write an ODE in
explicit
form.