9.15 泰勒和麦克劳林系列介绍
Section outline
-
In the previous concept, a known function in a form resembling the sum of a convergent infinite geometric series ( S = a 1 − r ) , was represented by a power series , e.g., y = 1 1 − x = ∞ ∑ k = 0 x n , | x | < 1 . What if the function does not resemble the form S = a 1 − r ? To see how a function, infinitely differentiable in some interval, could be represented by a power series, try to determine the series coefficients a n for f ( x ) = e x = ∞ ∑ n = 1 a n x n by evaluating the series and four of its derivative at x = 0 . Can you determine the relationship between the values of a n and %7D(x%3D0)"> f ( n ) ( x = 0 ) ?
::在前一个概念中,一个已知函数,其形式与集合的无限几何序列(S=a1-r)之和相类似,以一个功率序列表示,例如,y=11-xk=0xn,x1。如果函数与表S=a1-r不相像呢?看看一个在某个间隙中可以无限不同的函数如何以功率序列表示,通过在 x=0 中评估该序列及其四个衍生物,试图确定 f(x)=exn=1anxn的序列系数。您能确定一个函数和 f(x=0) 的值之间的关系吗?
Introduction to Taylor and Maclaurin Series
::泰勒和麦克劳林系列介绍In the previous concept, the geometric series was used as a model to create power series useful for representing certain functions in the interval of convergence . A more general approach for creating a power series representation comes from the following theorem:
::在前一个概念中,几何序列被用作一种模式,用以创建在趋同间隔内用于代表某些功能的电力序列。Power Series Coefficients for Function Representations
::职能代表的电联系列电联If the function f ( x ) has a power series representation at x = x 0 given by
::如果函数 f( x) 在 x=x0 时有一个功率序列表示法,则函数 f( x) 由f ( x ) = ∞ ∑ n = 0 a n ( x − x 0 ) n for | x − x 0 | < R c ,
:xx) n=0an(x-x0)n,用于 x-x0Rc,
then the coefficients are given by %7D(x_0)%7D%7Bn!%7D"> a n = f ( n ) ( x 0 ) n ! , so that the power series representation x = x 0 has the form:
::然后以 an=f(x0)n 给定系数!, 以便电源序列表示 x=x0 具有窗体:
%7D(x_0)%7D%7Bn!%7D%20%0A(x-x_0)%5En."> f ( x ) = ∞ ∑ n = 0 f ( n ) ( x 0 ) n ! ( x − x 0 ) n .
:xx)n=0f
x0
n!(x-x0)n。
Given the above, two forms of the power series are distinguished:
::鉴于上述情况,对权力序列有两种不同形式:The Taylor series representation , T ( x ) , of a function f ( x ) at x = x 0 is the power series:
::Taylor 序列表示, T(x), x=x0 函数 f(x) 的函数 f(x) 是电源序列 :%7D(x_0)%7D%7Bn!%7D%20%0A(x-x_0)%5En%20%20%5C%5C%0A%26%3D%20f(x_0)%20%2B%20f%5E%7B%5Cprime%7D(x_0)(x-x_0)%20%2B%5Cfrac%7Bf%5E%7B%7B%5Cprime%7D%7B%5Cprime%7D%7D(x_0)%7D%7B2!%7D%20(x-x_0)%5E2%2B%20%5Cfrac%7Bf%5E%7B%7B%5Cprime%7D%7B%5Cprime%7D%7B%5Cprime%7D%7D(x_0)%7D%7B3!%7D(x-x_0)%5E3%2B%20%5Ccdots"> T ( x ) = ∞ ∑ n = 0 f ( n ) ( x 0 ) n ! ( x − x 0 ) n = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + ⋯
::T(x)\n=0f\x0(x)\n! (x-x0)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The Maclaurin series representation , M ( x ) , of a function f ( x ) is the Taylor series for x 0 = 0 :
::函数 f( x) 的 Maclaurin 序列代表 M(x) 是 x0=0 的 Taylor 序列 :%7D(0)%7D%7Bn!%7D%20x_n%20%5C%5C%0A%26%3D%20f(0)%20%2B%20f%5E%7B%5Cprime%7D(0)x%2B%20%5Cfrac%7Bf%5E%7B%7B%5Cprime%7D%7B%5Cprime%7D%7D(0)%7D%7B2!%7D%20x%5E2%2B%20%5Cfrac%7Bf%5E%7B%7B%5Cprime%7D%7B%5Cprime%7D%7B%5Cprime%7D%7D(0)%7D%7B3!%7D%20x%5E3%20%2B%20%5Ccdots"> M ( x ) = ∞ ∑ n = 0 f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + ⋯
::M(x) @n=0f(0)n!xn=f(0)+f(0)+f}(0)x+f}(0)2!x2+f}(0)3!x3}#
Find the power series representation of f ( x ) = cos x at:
::查找 f( x) =cosx 的功率序列表示值 :-
x
0
=
0
::x0=0 -
x
0
=
π
3
::x03
The power series representation of f ( x ) = cos x at x = 0 is the Maclaurin series given by %7D(0)%7D%7Bn!%7D%20x%5En"> M ( x ) = ∞ ∑ n = 0 f ( n ) ( 0 ) n ! x n .
::x=0时 f(x) =cosx 的功率序列表示为 M(x)\\n= 0f0n!xn 给出的Maclaurin 序列。
Some of the required series coefficients are:
::要求的一些系列系数如下:%7D(x)"> f ( n ) ( x ) %7D(x%3D0)"> f ( n ) ( x = 0 ) f ( x ) = cos x 1 f ′ ( x ) = − sin x 0 f ′ ′ ( x ) = − cos x -1 f ′ ′ ′ ( x ) = sin x 0 f ( 4 ) ( x ) = cos x 1 f ( 5 ) ( x ) = − sin x 0 Notice the pattern repeats every 4 terms.
::注意模式每四个条件重复一次。The Maclaurin series of f ( x ) = cos x is:
::F(x)=cosx的Maclaurin系列是:M ( x ) = 1 − 1 2 ! x 2 + 1 4 ! x 4 − 1 6 ! x 6 + 1 8 ! x 8 − ⋯ = ∞ ∑ n = 0 ( − 1 ) n ( 2 n ) ! x 2 n .
::M(x) = 1 - 12! x2+14! x4 - 16! x6+18! x8\n= 0 (- 1)n( 2n)! x2n.This is the same power series representation introduced in the previous concept. It is called the Maclaurin power series representation of f ( x ) = cos x .
::这是上一个概念中引入的相同的权力序列表示法。 它被称为 Maclaurin 权力序列表示法 f( x) = cosx 。The power series representation of f ( x ) = cos x at x = π 3 is the Taylor series given by %7D(x_0)%7D%7Bn!%7D(x-x_%7B0%7D)%5En"> T ( x ) = ∞ ∑ n = 0 f ( n ) ( x 0 ) n ! ( x − x 0 ) n .
::f( x) =cosx 的功率序列表示 x *% 3 是 T( x) n= 0f( n)( x0) n! (x- x0) n 给出的 Taylor 序列 。Some of the required series coefficients are:
::要求的一些系列系数如下:%7D(x)"> f ( n ) ( x ) %7D%20%5Cleft(x%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cright)"> f ( n ) ( x = π 3 ) f ( x ) = cos x 1 2 f ′ ( x ) = − sin x − √ 3 2 f ′ ′ ( x ) = − cos x − 1 2 f ′ ′ ′ ( x ) = sin x √ 3 2 f ( 4 ) ( x ) = cos x 1 2 f ( 5 ) ( x ) = − sin x − √ 3 2 The Taylor series of f ( x ) = cos x centered at x = π 3 is:
::F(x) =cosx 的泰勒系列居于 x% 3 的中心是 :T ( x ) = 1 2 − √ 3 2 ( x − π 3 ) − 1 2 1 2 ! ( x − π 3 ) 2 + √ 3 2 1 3 ! ( x − π 3 ) 3 + 1 2 1 4 ! ( x − π 3 ) 4 − ⋯
::T(x) = 1232(x3)- 1212! (x3) 23213! (x3) 3+1214! (x3) 44T ( x ) = − 1 + ( x − 2 ) − 2 1 2 ! ( x − 2 ) 2 + 6 1 3 ! ( x − 2 ) 3 − 24 1 4 ! ( x − 2 ) 4 + ⋯ = ∞ ∑ n = 0 ( − 1 ) n + 1 ( x − 2 ) n
::T(x)1+(x-2)-2-2-212!(x-2)2+613!(x-2)3-2414!(x-2)4n=0(-1)n+1(x-2)nCommon Maclaurin Series
::共同的麦克劳林系列There are many functions which can be represented by power series. Listed below are some common functions, their Maclaurin series forms, and the domain of applicability (convergence interval).
::有许多功能可以用电源序列来代表,下面列出一些共同功能、其Maclaurin序列形式和适用性领域(趋同间隔)。Maclaurin Power Series
::Maclaurin电力系列Interval of Convergence
::趋同的间隔sin x = ∞ ∑ n = 0 ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯
::sinxn=0(- 1)nx2n+1( 2n+1)!=x- x33!+x55!- x77!) @ @ @( − ∞ , ∞ )
cos x = ∞ ∑ n = 0 ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯
::comsxn=0(- 1)nx2n( 2n)!=1- x22!+x44!- x66!) @ {\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ </span> </p> </td> <td> <p id="x-ck12-xku"> <span class="x-ck12-mathEditor" data-contenteditable="false" data-edithtml="" data-math-class="x-ck12-math" data-mathmethod="inline" data-tex="(-%20%5Cinfty%2C%20%5Cinfty)"> <span class="MathJax_Preview" style="color: inherit;"> <span class="MJXp-math" id="MJXp-Span-1373"> <span class="MJXp-mtable" id="MJXp-Span-1374"> <span> <span class="MJXp-mtr" id="MJXp-Span-1375" style="vertical-align: baseline;"> <span class="MJXp-mtd" id="MJXp-Span-1376" style="text-align: right;"> <span class="MJXp-mo" id="MJXp-Span-1377" style="margin-left: 0em; margin-right: 0em;"> ( </span> <span class="MJXp-mo" id="MJXp-Span-1378" style="margin-left: 0.267em; margin-right: 0.267em;"> − </span> <span class="MJXp-mi" id="MJXp-Span-1379"> ∞ </span> <span class="MJXp-mo" id="MJXp-Span-1380" style="margin-left: 0em; margin-right: 0.222em;"> , </span> <span class="MJXp-mi" id="MJXp-Span-1381"> ∞ </span> <span class="MJXp-mo" id="MJXp-Span-1382" style="margin-left: 0em; margin-right: 0em;"> ) </span> </span> </span> </span> </span> </span> </span> <span class="MathJax_SVG MathJax_SVG_Processing" id="MathJax-Element-64-Frame" style="font-size: 100%; display: inline-block;" tabindex="-1"> </span> <script id="MathJax-Element-64" type="math/tex"> \begin{align*}(- \infty, \infty)\end{align*}e x = ∞ ∑ n = 0 x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + ⋯
::exn=0xnn!=1+x+x22!+x33!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x22\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\( − ∞ , ∞ )
ln ( 1 + x ) = ∞ ∑ n = 0 ( − 1 ) n x n + 1 n + 1 = x − x 2 2 ! + x 3 3 ! − x 4 4 ! + ⋯
::In( 1+x)\\\ n=0 (- 1nxn+1n+1n+1=x- x22! +x33!- x44!)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\( − 1 , 1 ]
ln ( 1 − x ) = ∞ ∑ n = 0 ( − 1 ) x n + 1 n + 1 = − x − x 2 2 ! − x 3 3 ! − x 4 4 ! + ⋯
::In(1-x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\[ − 1 , 1 )
arcsin x = sin − 1 x = ∞ ∑ n = 0 ( 2 n ) ! x 2 n + 1 2 2 n ( n ! ) 2 ( 2 n + 1 )
::arcsinx=sin- 1xn= 0( 2n)! x2n+122n( n!) 2( 2n+1)[ − 1 , 1 ]
arctan x = tan − 1 x = ∞ ∑ n = 0 ( − 1 ) n x 2 n + 1 2 n + 1
::arctanx=tan- 1xn=0(- 1)nx2n+12n+1)( − 1 , 1 )
sinh x = ∞ ∑ n = 0 x 2 n + 1 ( 2 n + 1 ) !
::sinhxn= 0x2n+1 (2n+1)!( − ∞ , ∞ )
cosh x = ∞ ∑ n = 0 x 2 n ( 2 n ) !
::COshxn= 0x2n( 2n) !( − ∞ , ∞ )
Knowing the above series can often simplify the determination of a power series representation for another function.
::了解上述系列往往可以简化确定另一职能的权力序列代表。Find a power series representation of the function f ( x ) = x sin x 3 centered at x 0 = 0 .
::查找函数 f( x) =xsinx3 的功率序列表示值, 以 x0=0 为中心 。The series f ( x ) = x sin x 3 can be written as the product of x and the power series for the sine function, using the argument x 3 instead of x .
::f(x) =xsinx3 序列可以用参数 x3 而不是 x 来写成 x 的产物和正弦函数的功率序列。x sin x 3 = x ∞ ∑ n = 0 ( − 1 ) n ( x 3 ) 2 n + 1 ( 2 n + 1 ) ! = x ∞ ∑ n = 0 ( − 1 ) n x 6 n + 3 ( 2 n + 1 ) ! = ∞ ∑ n = 0 ( − 1 ) n x 6 n + 4 ( 2 n + 1 ) !
::xinx3=xn=0(- 1)n(x3)2n+1( 2n+1)!=x_n=0(- 1)nx6n+3( 2n+1)!\n=0(- 1)nx6n+4( 2n+1)!Examples
::实例Example 1
::例1Earlier, you were asked to determine the series coefficients a n for f ( x ) = e x = ∞ ∑ n = 1 a n x n by evaluating the series and four of its derivative at x = 0 . You were also asked about the relationship between the values of a n and %7D(x%3D0)"> f ( n ) ( x = 0 ) .
::早些时候,有人要求您通过在 x=0 时对 f(x) = exn= 1anxn 序列及其四个衍生物进行估评来确定 f(x) = exn = 1anxn 的序列系数。 也有人要求您了解 a 和 f(x=0) 的值之间的关系。
Were you able to figure this out? Just list the results:
::你能弄清楚吗?f ( 0 ) = e 0 = 1 = ∞ ∑ n = 0 a n x n = a 0 ⇒ a 0 = f ( 0 ) = 1 , f ′ ( 0 ) = e 0 = 1 = ∞ ∑ n = 1 n a n x n − 1 = a 1 ⇒ a 1 = f ′ ( 0 ) 1 = 1 , f ′ ′ ( 0 ) = e 0 = 1 = ∞ ∑ n = 2 n ( n − 1 ) a n x n − 2 = 2 a 2 ⇒ a 2 = f ′ ′ ( 0 ) 2 = 1 2 , f ′ ′ ′ ( 0 ) = e 0 = 1 = ∞ ∑ n = 3 n ( n − 1 ) ( n − 2 ) a n x n − 3 = 6 a 3 ⇒ a 3 = f ′ ′ ′ ( 0 ) 6 = 1 3 ! , f ( 4 ) ( 0 ) = e 0 = 1 = ∞ ∑ n = 4 n ( n − 1 ) ( n − 2 ) ( n − 3 ) a n x n − 4 = 24 a 4 ⇒ a 4 = f ( 4 ) ( 0 ) 24 = 1 4 ! .
::f( 0) = e0= 1\\\\ n0= 0xn= 10\\\\\\\\\\\\0\\\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0=0\0\0\0\0\1\1\1\1\1\1\1\\\1\\\\0\2\2\2\2\0\2\0\0\0\0\0\0\2\0\0\2\0\0\0\0\0\0\0\2\2\0\0\0\0\4\4\4\4\\1\1\\\\\\\1\1\1\0\0\\\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\\\0\0\0\0\\\\0\0\\\\0\0\0\0\\\\0\0\0\0\0\0\0\0\\\\\\\0\0\0\0\\\\0\0\0\\\\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\1\1\1\1\0\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\\1\Do you see the pattern? The function can be written as:
::您看到这个模式吗? 函数可以写为:f ( x ) = e x = ∞ ∑ n = 1 a n x n = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + 1 4 x 4 + ⋯ = ∞ ∑ n = 0 x n n ! a n . This is how Maclaurin series are generated.
::f(x) =exn= 1anxn= 1+x+12! x2+13! x3+14x4@n=0xnn! an。 这是 Maclaurin 序列是如何生成的 。Example 2
::例2Find the power series representation of f ( x ) = 1 1 − x centered on:
::查找 f( x) = 11 - x 的电源序列表示法, 以 :-
x
=
0
::x=0x=0 -
x
=
2
::x=2x=2
The power series representation of f ( x ) = 1 1 − x at x = 0 is the Maclaurin series given by %7D(0)%7D%7Bn%20!%7D%20x%5En"> M ( x ) = ∞ ∑ n = 0 f ( n ) ( 0 ) n ! x n .
::x=0时的 f(x)=11-x 的功率序列表示为 M(x)\\n= 0fn!xn 给出的 Maclaurin 序列。
Some of the required series coefficients are:
::要求的一些系列系数如下:%7D(x)%0A"> f ( n ) ( x ) %7D(x%3D0)%0A"> f ( n ) ( x = 0 ) f ( x ) = 1 1 − x 1 f ′ ( x ) = 1 ( 1 − x ) 2 1 f ′ ′ ( x ) = 2 ( 1 − x ) 3 2 f ′ ′ ′ ( x ) = 6 ( 1 − x ) 4 6 f ( 4 ) ( x ) = 24 ( 1 − x ) 5 24 f ( 5 ) ( x ) = − sin x 0 The Maclaurin series of f ( x ) = 1 1 − x is:
::F(x)=11-x的Maclaurin系列是:M ( x ) = 1 + x + 2 x 2 2 ! + 6 x 3 3 ! + 24 x 4 4 ! + ⋯ = ∞ ∑ n = 0 x n .
::M(x) = 1+x+2x22!+6x33!+24x44! @n=0xn。This is the same power series representation introduced in the previous concept. It is a geometric series.
::这是前一个概念中引入的相同的权力序列表示。 这是一个几何序列 。The power series representation of f ( x ) = 1 1 − x at x = 2 is the Taylor series given by %7D(x_0)%7D%7Bn%20!%7D%20(x-x_0)%5En"> T ( x ) = ∞ ∑ n = 0 f ( n ) ( x 0 ) n ! ( x − x 0 ) n .
::F(x)=11-x在 x=2 时的功率序列表示为 T(x)\\n= 0f(x0)n!(x-x0)n 给出的泰勒序列。
Some of the required series coefficients are:
::要求的一些系列系数如下:%7D(x)%0A"> f ( n ) ( x ) %7D(x%3D2)%0A"> f ( n ) ( x = 2 ) f ( x ) = 1 1 − x -1 f ′ ( x ) = 1 ( 1 − x ) 2 1 f ′ ′ ( x ) = 2 ( 1 − x ) 3 -2 f ′ ′ ′ ( x ) = 6 ( 1 − x ) 4 6 f ( 4 ) ( x ) = 24 ( 1 − x ) 5 -24 The Taylor series of f ( x ) = cos x centered at x = π 3 is:
::F(x) =cosx 的泰勒系列居于 x% 3 的中心是 :Example 3
::例3Find the following representations:
::发现以下陈述:-
Taylor series for
f
(
x
)
=
e
2
x
centered on
x
=
3
.
::f( x) =e2x 的 Taylor 序列, 以 x= 3 为中心 。 -
Maclaurin series for
cosh
x
=
e
x
+
e
−
x
2
(by using known series); compare it to the series for
cos
x
.
::cosx=ex+e-x2的Maclaurin系列(使用已知序列);将其与cosx的序列进行比较。
The Taylor series representation for f ( x ) = e 2 x centered on x = 3 is %7D(x_0)%7D%7Bn%20!%7D(x-x_0)%5En"> T ( x ) = ∞ ∑ n = 0 f ( n ) ( x 0 ) n ! ( x − x 0 ) n .
::f( x) =e2x 以 onx = 3 为中心的 Taylor 序列表示为 T( x) = 0f(x0)n! (x- x0)n 。
Here x 0 = 3 , and have the form:
::这里 x0=3, 表格如下:%7D(x)%20%26%3D2%5En%20e%5E%7B2x%7D"> f ′ ( x ) = 2 e 2 x f ′ ′ ( x ) = 2 2 e 2 x f ′ ′ ′ ( x ) = 2 3 e 2 x ⋮ f ( n ) ( x ) = 2 n e 2 x
::f\( x) = 2e2xf}( x) = 222e2xf}( x) = 23e2x}* f( n( x) = 2ne2xTherefore,
::因此,T ( x ) = ∞ ∑ n = 0 2 n e 6 n ! ( x − 3 ) n = ∞ ∑ n = 0 e 6 n ! [ 2 ( x − 3 ) ] n .
:xx)n=02ne6n! (x-3)n\n=0e6n! [2(x-3)]n.
Using the known Maclaurin series for e x , for cosh x = e x + e − x 2 we get:
::使用已知的 Maclaurin 序列前, 对于 coshx=ex+e- x2, 我们得到 :cosh x = e x + e − x 2 = 1 2 [ ∞ ∑ n = 0 x n n ! + ∞ ∑ n = 0 ( − x ) n n ! ] = ∞ ∑ n = 0 1 + ( − 1 ) n 2 ( n ! ) x n = 2 2 ( 0 ! ) x 0 + 0 ⋅ x 1 + 2 2 ( 2 ! ) x 2 + 0 ⋅ x 3 + 2 2 ( 4 ! ) x 4 + ⋯ = ∞ ∑ n = 0 x 2 n ( 2 n ) !
::comshx=ex+e- x2=12[n=0xnn!]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Therefore, cosh x = e x + e − x 2 = M ( x ) = ∞ ∑ n = 0 x 2 n ( 2 n ) ! .
::因此, cosx=ex+e-x2=M(x)\\n=0x2n( 2n)!!By comparison, the series for cos x is cos x = ∞ ∑ n = 0 ( − 1 ) n x 2 n ( 2 n ) ! , which is an version of cosh x .
::相比之下, cosx 的序列为 cosx=0(- 1)nx2n( 2n)!, 这是 Coshx 的版本 。Review
::回顾For #1-11, find a power series representation of the function centered at the given x 0 .
::对于 # 1- 11, 找到以给定 x0 为中心的函数的电源序列表示 。-
f
(
x
)
=
sin
x
,
x
0
=
0
.
::f(x) =sinx, x0=0。 -
f
(
x
)
=
sin
2
x
,
x
0
=
0
.
::f(x) =sin2x, x0=0。 -
f
(
x
)
=
tan
x
,
x
0
=
0
(first 4 terms only)
::f(x) = tanx, x0=0(仅前4个术语) -
f
(
x
)
=
tan
x
,
x
0
=
π
4
(first 5 terms only)
::f(x) = tanx, x04 (仅前5个术语) -
f
(
x
)
=
√
1
+
x
:xx)%1+x
-
√
1
+
x
+
x
2
at
x
0
=
−
1
2
(first 4 terms)
::++x+x2 时为 x0 @% 12 (前4个条件) -
f
(
x
)
=
cos
2
x
,
x
0
=
0
. Hint: Use
cos
2
x
=
1
2
+
1
2
cos
2
x
::f(x) = cos2x, x0=0. 提示: 使用 cos2x= 12+12cos2x -
x
e
x
,
x
0
=
0
::xex, x0=0xxxxex, x0=0 -
(
1
+
x
)
α
,
α
a real constant;
x
0
=
0
:1+x) α, α a 实值常数; x0=0
-
ln
(
3
+
9
x
)
,
x
0
=
0
::In( 3+9x), x0=0 -
Use series expansions to evaluate
lim
x
→
0
sin
k
x
x
::使用序列扩展来评价 limx0sinkxxxx -
Expand
e
−
x
cos
x
about
x
=
π
2
.
::展开 e - xcosx 大约 x% 2 。 -
If
f
(
x
)
=
∞
∑
n
=
1
(
−
1
)
n
(
x
−
7
)
n
+
1
n
!
, find
f
(
6
)
(
7
)
.
::如果 f( x) n=1 (- 1) n( x-7) n+1n!,请查找 f(6)(7)。 -
Evaluate the indefinite integral
∫
e
x
−
1
x
d
x
as an infinite series.
::将无限的 ex- 1xdx 作为无限序列来评估 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
x
0
=
0