章节大纲

  • Corey has a bowl of fruit that consists of 5 apples, 4 oranges , and 3 limes . Katelyn went to the farmer's market and picked up 2 apples, 5 limes , and an orange. How many apples, oranges , and limes  do Corey and Katelyn have combined?
    ::科里有一碗水果,由5个苹果、4个橙子和3个石灰组成。凯特林去了农贸市场,拿了2个苹果、5个石灰和1个橙子。科里和凯特林加了多少苹果、橙子和石灰?

    Combining like terms is much like grouping together different fruits, like apples and oranges.
    ::结合类似术语 就像是将不同的水果 组合在一起,比如苹果和橙子。

    lesson content

     

    Combining Like Terms
    ::将类似术语合并

    You might have noticed from the previous concept, that sometimes variables and numbers can be repeated within an expression . If the same variable appears in an expression more than once, the terms with that variable possibly can be combined by addition or subtraction . This process is called combining like terms .
    ::您可能已经从上一个概念中注意到, 有时变量和数字可以在表达式中重复。 如果同一个变量出现在一个表达式中不止一次, 与该变量的术语可能可以通过添加或减法合并。 这个过程被称为类似术语的组合 。

    Before we discuss combining like terms, let's first look at what like terms are.
    ::在我们讨论将类似术语合并之前, 让我们先看看术语是什么样的。

     Like Terms and How to Combine Them  
    ::类似术语和如何将两者结合起来

    Like terms are terms that have the  same variables and each variable is raised to the same power. 
    ::类似术语是具有相同变数的术语,每个变数被提升到相同的变数。

    To combine like terms, add or subtract the coefficients and keep the variable part of the terms
    ::将类似术语合并,增减系数,保留术语的可变部分。

    Example 1
    ::例1

    Are the following pairs of terms like terms? 
    ::以下的两条术语是否类似术语?

    a.  4 x y 2 z 6  and  3 x y 2 z 6
    ::a. 4xy2z6和-3xy2z6

    b.  4 x y 2 z 6  and  7 x y 2
    ::b. 4xy2z6和7xy2

    c.  4 x y 2 z 6  and  2 x 2 y z 6
    ::c. 4xy2z6和-2x2yz6

    Solution:  
    ::解决方案 :

    a. To determine if two terms are like terms, we need to focus on their variable parts. Each term has an  x , a y , and a z . In each, x  is raised to the first power, y  is raised to the second power, and z  is raised to the sixth power. Since these terms have the same variables and each is raised to the same power, they are like terms and we can combine them.
    ::a. 为了确定两个术语是否类似术语,我们需要关注其变量部分。每个术语有一个 x, a y 和 z。每个术语有一个 x, a y 和 z。在每一个术语中, x 被提升到第一个电源, y 被提升到第二个电源, z 被提升到第六个电源。由于这两个术语具有相同的变量,而每个变量被提升到同一个电源,它们就像术语,我们可以将它们结合起来。

    b. While both of these terms have an x  and a y , 7 x y 2  does not have  z  as a variable. Therefore , they are not like terms and we cannot combine them.
    ::b. 虽然这两个术语都有 x 和 y, 7xy2 没有z作为变量。因此,它们与术语不同,我们不能将它们合并。

    c. These two terms have the same variables, but the x  is raised to the first power in the first term and raised to the second power in the second term. The powers for y  are not the same as well. Therefore, these are not like terms and cannot be combined.        
    ::c. 这两个词具有相同的变量,但x在第一个任期内被提升到第一个权力,在第二个任期内被提升到第二个权力。y的权力也不相同,因此,它们与术语不同,不能合并。

    Example 2
    ::例2

    Simplify 5 x 12 3 x + 4 .
    ::简化 5x- 12- 3x+ 4。

    Solution:  To simplify here, reorganize the expression to group together the x ’s and the numbers. You can either place the like terms next to each together or place " data-term="Parentheses" role="term" tabindex="0"> parentheses around the like terms. 
    ::解决方案 : 要在此简化, 请将表达式重新组合为 x 和数字组。 您可以将类似条件放在彼此旁边, 或者将类似条件括号放在类似条件周围 。

    5 x 12 3 x + 4 5 x 3 x 12 + 4 or ( 5 x 3 x ) + ( 12 + 4 ) 2 x 8

    ::5-12-3x+45x-3x-12+4or(5x-3x)+(-12+4)2x-8

    Example 3
    ::例3

    Simplify 6 a 5 b + 2 a 10 b + 7 .
    ::简化 6a- 5b+2a- 10b+7。

    Solution: Here there are two different variables, a and b . Even though they are both variables, they are different variables and cannot be combined. Group together the like terms.
    ::解决办法:这里有两个不同的变量,a和b。尽管这两个变量都是变量,但它们是不同的变量,不能合并。将类似术语组合在一起。

    6 a 5 b + 2 a 10 b + 7 = ( 6 a + 2 a ) + ( 5 b 10 b ) + 7 = 8 a 15 b + 7

    ::6-5b+2a-10b+7=(6a+2a)+(-5b-10b)+7=8a-15b+7

    The  term that is just a number is called the constant term  and we tend to place it  last . Also, in general, list the variables in alphabetical order .
    ::仅是一个数字的术语被称为常数术语,我们倾向于将其置于最后。此外,一般地,用字母顺序列出变量。

    Example 4
    ::例4

    Simplify w 2 + 9 4 w 2 + 3 w 4 7 w 11 .
    ::简化 w2+9-4w2+3w4-7w-11。

    Solution: Here we have one variable, but there are different powers. We need to identify the like terms to combine them.
    ::解决办法:我们有一个变量,但权力不同。我们需要找出相似的术语来将它们结合起来。

    w 2 + 9 4 w 2 + 3 w 4 7 w 11 = 3 w 4 + ( w 2 4 w 2 ) 7 w + ( 9 11 ) = 3 w 4 3 w 2 7 w 2

    ::w2+9-4w2+3w2+4w2+3w2+3w4-7w-7w-11=3w4+(w2-4w2)-7w+(9-11)=3w4-3w2-7w-2)

    When writing an expression with different powers, we tend to list the powers from greatest to least, as we did  above.
    ::在以不同权力写出表达方式时,我们倾向于像上文那样,从最大到最小地列出权力。

    by Mathispower4u demonstrates how to simplify algebraic expressions.
    ::用 Mathispower4u 演示如何简化代数表达式。

    Example 5
    ::例5

    Corey has a bowl of fruit that consists of 5 apples, 4 oranges , and 3 limes . Katelyn went to the farmer's market and picked up 2 apples, 5 limes , and 1 orange . How many apples, oranges , and limes  do Corey and Katelyn have combined?
    ::科里有一碗水果,由5个苹果、4个橙子和3个石灰组成。凯特林去了农贸市场,拿了2个苹果、5个石灰和1个橙子。科里和凯特林加了多少苹果、橙子和石灰?

    Solution: Let's rewrite Corey's bowl of fruit as 5 a + 4 r + 3 l , where a   represents apples, r  represents oranges , and l  represents limes . Then Katelyn's bowl of fruit can be represented as 2 a + 5 l + r . Combining like terms, we have:
    ::解答:让我们重写科里(Corey)的水果碗5a+4r+3l, 代表苹果, R代表橙子, I代表石灰。 然后凯特林(Katelyn)的水果碗可以代表2a+5l+r。 结合类似条件, 我们有:

    ( 5 a + 4 r + 3 l ) + ( 2 a + 5 l + r ) = ( 5 a + 2 a ) + ( 4 r + r ) + ( 3 l + 5 l ) = 7 a + 5 r + 8 l

    :伤心5a+4r+3l)+(2a+5l+r)=(5a+2a)+(4r+r)+(3l+5l)=7a+5r+8l

    Together they have 7 apples, 5 oranges , and 8 limes .
    ::他们共有7个苹果,5个橙子,8个石灰。

    Example 6
    ::例6

    Jane needs to buy a notebook, a folder, and a USB drive for each of the five classes she is taking this semester. She also needs to buy two additional notebooks for her extra-curricular activities. If we let  = the cost of a notebook,  f = the cost of a folder, and  = the cost of a USB drive, we could use the following expression to represent the amount she will spend on these supplies:  5 ( n + f + u ) + 2 n . Simplify this expression.
    ::Jane需要购买笔记本、文件夹和USB驱动器, 供她本学期学习的五个班级中的每一个班级使用。 她还需要为她的课外活动另外购买两本笔记本。 如果我们让 n = 笔记本的费用, f = 文件夹的费用, u = USB驱动器的费用, 我们可以使用以下表达式来表示她将在这些用品上花费的金额: 5 (n+f+u)+2n。 简化这个表达式 。

    Solution:  We need to first distribute the 5. We will multiply 5 by n, f, and u.  Then we will combine the like terms.
    ::解决方案:我们首先需要分配5,我们将乘以5乘以n,f,u。然后,我们将合并同样的术语。

    5 ( n + f + u ) + 2 n = 5 n + 5 f + 5 u + 2 n = ( 5 n + 2 n ) + 5 f + 5 u = 7 n + 5 f + 5 u
     
    ::5(n+f+u)+2n=5n+5f+5u+2n=(5n+2n)+5f+5u=7n+5f+5u

    Summary
    ::摘要

    • Like terms are terms that have the same variables and each variable is raised to the same power.
      ::类似术语是具有相同变数的术语,每个变数被提升到相同的变数。


      ::类似术语是具有相同变数的术语,每个变数被提升到相同的变数。
    • To combine like terms, add or subtract the coefficients and keep the variable part of the terms.
      ::将类似术语合并,增减系数,保留术语的可变部分。


      ::将类似术语合并,增减系数,保留术语的可变部分。
    • To simplify algebraic expressions, perform any operations in parentheses, distribute where possible, and then add and subtract like terms from left to right.
      ::为了简化代数表达式,在括号中进行任何操作,尽可能进行分配,然后从左向右增减类似术语。

    Review
    ::回顾

    Simplify the following expressions as much as possible. If the expression cannot be simplified, write “cannot be simplified.”
    ::尽可能简化以下表达式。 如果该表达式不能简化, 请写“ 不能简化 ” 。

    1. 5 b 15 b + 8 d + 7 d
    ::1. 5b-15b+8d+7d

    2. 3 g 2 7 g 2 + 9 + 12
    ::2. 3g2-7g2+9+12

    3. 8 u 2 + 5 u 3 u 2 9 u + 14
    ::3. 8u2+5u-3u2-9u+14

    4. 2 a 5 f
    ::4.a-5f

    5. 7 p p 2 + 9 p + q 2 16 5 q 2 + 6
    ::5. 7p-2+9p+q2-16-5q2+6

    6. 8 n 2 5 n 2 + 9 n + 14
    ::6. 8n-2-5n2+9n+14

    7. 4 r 2 s 5 r s 3
    ::7. 4r2s5rs3

    8. 7 c 3 11 d
    ::8. 7c311d

    9. 6 a 18 3  
    ::9. 6a-183

    10. 2 b 2 5 b b
    ::10. 2b2-5bbb

    11. 3 ( 4 x 5 ) + 2 x
    ::11. 3(3,4x-5)+2x

    12. 7 ( 2 x + 3 ) 6 x
    ::12. 7(2x+3)-6x

    13. 4 ( x 5 ) + 2 x + 5 ( 3 2 x )
    ::13.-4(x-5)+2x+5(3-2x)

    14. 2 ( 5 + 8 x ) 6 x + 9 ( 3 x + 1 )
    ::14. 2(5+8x)-6x+9(3x+1)

     

    Explore More
    ::探索更多

    1. Combine like terms and u se the rules of exponents to simplify the following expression:
    ::1. 将类似术语合并,使用推手规则简化以下表述:


    4 x 2 y z 3 + 5 x 2 y z 3 12 x 2 y z 3 x y 2 z 2 x y 2 z

    ::4x2yz3+5x2yz3-12x2yz3x2yz3x2z2z-2x2z

     

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.
    ::请参看附录。

    PLIX
    ::PLIX

    Try these interactives that reinforce the concepts explored in this section:
    ::尝试这些强化本节所探讨概念的交互作用 :