3.6 其他形式的线条等式(点-线形形式和一般形式)
章节大纲
-
You work at a movie theater. For a movie blockbuster, the theater makes $11,850. If adult tickets cost $11 and child tickets cost $6.50, how many child's tickets were sold if they sold 900 adult tickets? In this section, we consider two other forms of the equation of a line to model situations like this one.
Point-Slope Form of the Equation of a Line
::线线的平方In the previous section, we discussed how to find equations of lines in slope-intercept form . However, sometimes you do not know the y- intercept . There is another form of a line that eliminates the need to know or to find the y- intercept. This is point- form.
::在前一节中,我们讨论了如何在斜坡界面中找到线的方程式。 但是, 有时您不知道 y 界面。 有另一种形式的线条可以消除知道或找到 y 界面的需要。 这是点形式 。As the name implies, point-slope form requires the slope and a point on the line. The equation is essentially a rearrangement of the slope formula . If we take the slope formula and multiply both sides by , we get
::正如名称所暗示的,点斜体形式需要斜度和线上的一个点。方程基本上是斜度公式的重新排列。如果我们采用斜度公式,将两边乘以 x2 - x1,我们得到
::my2-y1x2- x1 (x2- x1)\\ m=y2-y1x2- x1)\ x1}(x2- x1)\\ m(x2- x1)=y2-y1For a fixed m, there are an infinite number of points that satisfy this equation if we know one of the points . To represent this, we replace with variables .
::对于一个固定米,如果我们知道一个点(x1,y1),有无限数量的点可以满足这个方程。 要代表这个点,我们用变量(x,y)取代(x2,y2),以变量(x,y)取代(x,y)。Point-Slope Form of the Equation of a Line
::线线的平方The point-slope form of a line is
::线条的点斜体形式是
::yy1=m(x-x1)where is the slope of the line and is a point on the line.
::m 是线的斜坡, (x1,y1) 是线上的一个点 。Example 1
::例1Find the equation of a line whose slope is 4 and goes through the point (1,3).
::查找斜度为 4 并经过点(1,3) 的线的方程。Solution: Here we are given the slope and a point on the line, so we use point-slope form. We identify the values for and and substitute into the equation.
::解答: 这里我们给定了斜坡和线上的一个点, 所以我们使用点窗体。 我们确定 m、 x1 和 y1 的值, 并替换为等式 。
::m= 4x1= 1y1= 3y- 3= 4(x- 1) 这是与给定属性对应的直线方程式 。Example 2
::例2Find the equation of a line whose slope is and goes through the point (-5,6).
::查找斜坡为12且经过点( 5, 6) 的线的方程。Solution: Again, we know the slope and a point on the line, so we use point-slope form. Identifying the missing values and substituting into the equation, we have
::解决方案:再次,我们知道斜坡和线上的一个点, 所以我们使用点- 斜坡形式。 识别缺失的值, 并替换到方程中, 我们找到了
::m=12x15y1=6y-y1=m(x-x1)-6=12(x-(5))y-6=12(x+5)Subtracting -5 is the same as addition by 5: keep the sign of the , change the operation to addition, and change the sign of the second number from negative to positive.
::减法 - 5与增加5:保持x的标记,将操作改为增加,将第二个数字的标记从负数改为正数。Example 3
::例3Find the equation of the line that has a slope of -9 and goes through (-7,0).
::查找线的方程,线的斜度为 -9,然后通过(-7,0)。Solution: Be careful here. The point we have is not the y- intercept. For the y- intercept, the x- value is 0. This is the x- intercept. Using point-slope form, we have
::解答: 注意这里。 我们的点不是 y 界面。 对于 y 界面, x 值为 0。 这是 x 界面。 使用 point- slope 格式, 我们已经有了
::=%9x17y1=0y-y1=m(x-x1)-0_9(x-(-7))y_9(x+7)If we distribute the -9 to each one of the terms , we have the equation of this line in slope-intercept form: .
::如果我们将 -9 分配到每个术语中, 我们就会在斜坡截取形式上使用此线的方程式 : y9x- 63 。Example 4
::例4Find the equation of the line that contains the points (-1,3) and (2,-6).
::查找包含点数(-1,3)和点数(2,6)的线的方程。Solution: We can use point-slope form since we know two points on the line. First, we need to find the slope.
::解决方案:我们可以使用点窗体,因为我们知道线上有两个点。首先,我们需要找到斜坡。
:x1,y1) = (-1,3) (x2,y2) = (2,-6) m) 6 - 32 - (-1) 93 3
Now, that we know the slope, we can substitute into the point-slope equation using the we defined above.
::现在,我们知道斜坡, 我们可以用上面定义的(x1,y1) 来替代点偏方程。
::y-y1=m(x-x1)-33(x-(-1))-y-33(x-(-1))-y-3_3(x+1) 由 CK-12 演示如何根据线条的坡度和 y- intercept 或两点写线的方程 。General Form of the Equation of a Line
::线条等式的一般形式We have another way to write the equation of a line. As we will see, it is a convenient form for graphing and modeling situations.
::我们用另一种方式来写一个线的等式。我们可以看到,它是绘制图表和建模的方便形式。General Form of the Equation of a Line
::线条等式的一般形式The general form of a line is
::直线的一般形式是
::Ax+By=C 轴+By=Cwhere and are real numbers .
::其中A、B和C是真实数字。To get an equation in general form, you often have to start with one of the other forms and convert those to general form. We see this in the next example.
::要以一般形式获得等式, 您往往必须从其它表格之一开始, 并将这些表格转换为一般形式。 我们从下一个示例中看到这一点 。Example 5
::例5Find the equation of a line in general form where the slope is and passes through (4, -1).
::在斜坡为34且通过(4,-1)的直线中,查找以一般形式表示的直线的方程。Solution: To find the equation in general form, you need to determine what and are. Let’s start this example by finding the equation in point-slope form.
::解决方案 : 要找到一般形式的方程式, 您需要确定 A、 B 和 C 是什么 。 让我们先从点窗体的方程式开始 。
::y- (- 1) =34(x-4)y+1=34(x-4)To change this to general form we need to get the x- and y- terms on the same side of the equation and the numbers on the other side.
::要将其变成一般形式, 我们需要将 X 和 Y 术语放在方程的同一侧, 数字放在另一侧。
::y+1=34x-33-3-34x+y+1}3-34x+y_3x_4_4(-34x+y)_4(- 34x+y)_4(- 34x+y)_4(- 4)_4(- 4)3x-16y=16by CK-12 demonstrates how to convert from slope-intercept form of a linear equation to the general form.
::通过 CK-12 演示如何从线性方程式的斜度间距形式转换为一般形式。Example 6
::例6Find the equation of the line below, in general form.
::查找下面直线的方程式,以一般形式显示。Solution: Here, we are given the intercepts . Since we have a graph, we can find the slope using rise over run , and the y- intercept is (0, 6). The equation of the line, in slope-intercept form, is . To change the equation to general (standard) form, subtract the x- term to move it over to the other side.
::解答 : 在这里, 我们得到拦截 。 由于我们有一个图表, 我们能找到斜坡, 使用向上移动, 62=3, y 界面是 (0, 6) 。 斜坡- 界面形式的线的方程式是 y= 3x+6 。 要将方程式更改为一般( 标准) 格式, 请减去 x 期, 将其移到另一侧 。
::- 3x+y=6-1(-3x+y)\\\\\\\(6)OR3x-y=6by CK-12 demonstrates how to write linear equations in general form given two points.
::用 CK-12 演示如何以给定两个点的一般形式写出线性方程式。Example 7
::例7You work at a movie theater. For a movie blockbuster, the theater makes $11,850. If adult tickets cost $11 and child tickets cost $6.50, how many child's tickets were sold if they sold 900 adult tickets?
::你在一个电影院工作。对于一个电影大块头来说,电影院赚11 850美元。如果成人票价为11美元,儿童票价为6.50美元,如果他们卖900张儿童票,他们卖了多少张儿童票?Solution: Let's define some variables. Say is the number of adult tickets and is the number of child's tickets. Then, the money made from adult tickets is 11 times the number of adults tickets, or . Similarly, the amount of money made from child's tickets is . The total amount of money made is
::解决方案:让我们来定义一些变量。 说一是成人票数, c是儿童票数。 然后, 成人票数是成人票数的11倍, 即11a。 同样, 儿童票数的6. 5c。 钱总数是6. 5c。
::11a+6.5c=11 850一般形式Since we know the number of adults that purchased tickets, we can find the number of child's tickets by substituting into the equation.
::由于我们知道有多少成年人购买机票,我们可以用方程式来替代儿童机票的数量。
::11(900)+6.5c=11 8509 900+6.5c=11 850-9 900-9 900--9 900-6.5c=1 9506.5c=300There were 300 child's tickets sold.
::卖了300张孩子的票by Mathispower4u demonstrates how to write linear equations in general form to represent applications.
::由 Mathispower4u 演示如何以一般形式写成直线方程式以代表应用程序。Summary
::摘要-
Point-slope form (
): Identify the slope and a point on the line and then substitute for
and
.
::点窗体(y-y1=m(x-x1):标明斜坡和线上的一个点,然后取代m和(x1)y1。 -
General form
: Write the equation in slope-intercept or point-slope form and then use inverse operations to get
and
on the same side of the equation and the number on the other side
::一般窗体 (Ax+By=C): 以斜度截面或点窗体形式写入方程,然后使用反向操作获得方形同侧的 x 和 y 和另一侧的数字
Review
::回顾Find the equation of the lines in point-slope form with the following properties.
::以点倾斜窗体查找线条的方程式,其属性如下。1. slope = 2 and passes through (3, -5)
::1. 斜坡=2,通过(3,5)2. slope and passes through (6, -3)
::2. 斜度 12 和通过(6, 3)3. passes through (5, -7) and (-1, 2)
::3. 通过(5,-7)和(1、2)4. passes through (-5, -5) and (5, -3)
::4. 通过(5-5、5-5)和(5、3)Find the equation of the lines in general form with the following properties.
::以下列属性查找直线的直线方程式的一般形式。5. x- intercept = (-4,0) and y- intercept = (0,6)
::5. x 截取 = (4,0)和y 截取 = (0,6)6. slope = -3 and passes through (2,6)
::6. 坡度=-3和通过(2,6)7. equation of the line is
::7. y23x+4是y23x+48. equation of the line is
::8. Y-8=4(x-2)的直线等式为y-8=4(x-2)Convert the following equations into slope-intercept form.
::将以下方程式转换为斜坡界面形式。9.
::9. 4x+5y=2010.
::10. y+332(x-8)Explore More
::探索更多1. a. Find the equation of the line in point-slope form that passes through (-1,5) and (4,0) using (-1,5) as the point on the line.
::1. 将线条的方程以点窗体(1、5)和(4、0)以(1、5)作为线上点。b. Next, find the equation of the line in point-slope form using (4,0).
::b. 下一步,用点窗体(4,0)找到线的方程式。c. Convert each line into slope-intercept form. Does the point you choose in point-slope form matter?
::c. 将每条线转换为斜坡界面。用点偏斜窗体选择的点是否重要?2. a. Change into slope-intercept form. What are the slope and y- intercept equal to (in terms of and/or )?
::2. a. 将Ax+By=C改为斜坡界面。斜坡和Y(A、B和/或C)等于什么?b. Find one possible combination of and for . Write your answer in general form.
::b. 为y=12x-4寻找A、B和C的可能组合。3. a. The population of a town gradually decreases by about 50 people a year. In 2010, the population was 8,500 people. Write an equation in general form for the population of this town .
::3.a. 城镇人口每年逐步减少约50人,2010年人口为8,500人,为城镇人口撰写一个通用方程式。b. At this rate, when will the population of the town be 0 people?
::b. 按此速度计算,该镇人口何时为0人?4. You are 300 miles from home and driving at a speed of 55 mph. If , write an equation in point-slope form to model your drive home.
::4. 你离家300英里,驾驶速度55英里,如果时间的距离=率变化改变,用点窗形写一个方程来模拟驾驶车回家。5. You invest money into two accounts. The first account earns 2% interest and the second 5% interest. If you made a total of $165 in interest and you invested $3,000 in the first account, how much did you invest in the second account?
::5. 你将资金投资于两个账户:第一个账户赚取2%的利息,第二个账户赚取5%的利息;如果总共赚了165美元的利息,并在第一个账户上投资了3 000美元,那么在第二个账户上投资了多少?by Mathispower4u is a continuation of the previous video and explains how to write a linear equation in general form to represent an application.
::Mathispower4u 是前一段视频的继续, 解释如何写出一般形式的线性方程式, 以代表应用程序 。Answers for Review and Explore More Problems
::回顾和探讨更多问题的答复Please see the Appendix.
::请参看附录。PLIX
::PLIXTry these interactives that reinforce the concepts explored in this section:
::尝试这些强化本节所探讨概念的交互作用 : -
Point-slope form (
): Identify the slope and a point on the line and then substitute for
and
.