章节大纲

  • You are asked to frame a picture. You want the width of the frame to be 5 inches longer than the width of the glass and the height of the frame to be 7 inches longer than the height of the glass. You measure the glass and find the height to width ratio is 4:3. By multiplying the length and the width, you can write a polynomial to describe the area that the picture in the frame will cover. In this section, we begin to discuss multiplying . 
    ::您被要求设置图片框。 您希望框架宽度比玻璃宽度长5英寸,框架高度比玻璃高度长7英寸。 您测量了玻璃, 发现其高度与宽度之比是 4: 3 。 乘以长度和宽度, 您可以写一个多符号来描述框中图片所覆盖的区域。 在本节中, 我们开始讨论乘法 。

    lesson content

    Multiplying a Polynomial by a Monomial
    ::以单声道乘以多声道

    To multiply a polynomial by a monomial , there are a couple of previous concepts that we need to recall.
    ::要将多元性乘以单一性,我们需要回顾过去的一些概念。

    Example 1
    ::例1

    Simplify  ( 5 x 3 ) ( 8 x 7 ) .
    ::简化( 5x3)(- 8x7) 。

    Solution: To multiply a monomial by a monomial, we need to recall the product rule of exponents b m b n = b m + n . Then, we multiply numbers with numbers and variables with variables.
    ::解决方案 : 要将一个单式乘以一个单式, 我们需要记住推手的产物规则 : bmbn=bm+n 。 然后, 我们用数字和变量来乘以数字和变量 。

    ( 5 x 3 ) ( 8 x 7 ) = ( 5 8 ) ( x 3 x 7 ) = 40 x ( 3 + 7 ) = 40 x 10

    :伤心5x3 (- 8x7) = (58 (x3x7) = 40x( 3+7) 40x10)

       WARNING
    ::警告

    It is a common mistake to multiply the exponents:  x 3 x 7 x 3 7 x 21 .
    ::乘以指数是一个常见错误: x3x7x3x77x21。

    If we expand each of the terms , we can see why we need to add NOT multiply the exponents. The first term is  x 3 = x x x , so we are multiplying three  x 's together. The second term is x 7 = x x x x x x x  where we are multiplying seven  x 's together. All  together the total number of  x 's is  ten  x 's, or the sum of 3 and 7.    
    ::如果我们对每个术语进行扩展, 我们可以看到为什么我们需要添加不乘以前例。 第一个术语是 x3=xxxxxxxx, 所以我们将三个 x 相乘。 第二个术语是 x7=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, 我们乘以七个 x 共乘以七个 x 共乘。 x 共共共乘十 x 或三和七。

    Example 2
    ::例2

    Find 2 x ( x 2 + 4 ) .  
    ::查找 2x( x2+4) 。

    Solution: Recall the that said  a ( b + c ) = a b + a c . Here, we want to distribute the 2 x to each of the terms in the " data-term="Parentheses" role="term" tabindex="0"> parentheses
    ::解答: 回顾 a(b+c) =ab+ac 所说的 a(b+c) =ab+ac。 在此, 我们要将 2x 分配给括号中的每个词 。

    2 x ( x 2 + 4 ) = ( 2 x x 2 ) + ( 2 x 4 ) = 2 x 3 + 8 x
     
    ::2x(xx2+4) =( 2xxxx2) +( 2x4) = 2x3+8x

    We can expand this idea to polynomials with more terms.
    ::我们可以用更多的条件 把这个想法推广到多教派

    by CK-12 demonstrates how to multiply a monomial and a polynomial.
    ::由 CK-12 演示如何乘以单式和多式。

     

    Example 3
    ::例3

    Find 2 x 2 ( 3 x 3 4 x 2 + 12 x 9 ) .
    ::查找 - 2x2( 3x3- 4x2+12x- 9) 。

    Solution:   Use the distributive property to multiply 2 x 2 by the polynomial.
    ::解决方案: 将分配属性乘以 2- 2x2 乘以多数值 。

    2 x 2 ( 3 x 3 4 x 2 + 12 x 9 ) = ( 2 x 2 3 x 3 ) + ( 2 x 2 4 x 2 ) + ( 2 x 2 12 x ) + ( 2 x 2 9 ) = 6 x 5 + 8 x 4 24 x 3 + 18 x 2

    ::-2x2(3x3-4x2+12x-9)=(-2x2x2x3x3)+(-2x2x24x2)+(-2x2x2x12x)+(-2x2x2x12x)+(-2x2x2*9)\*6x5+8x4-24x3+18x2

       WARNING
    ::警告

    Make sure to distribute to all of the terms in the polynomial not just the first one. 
    ::确保将多纪念书中的所有术语, 不仅仅是第一个术语。

    For example,  2 x 2 ( 3 x 3 4 x 2 + 12 x 9 ) 6 x 5 4 x 2 + 12 x 9
    ::例如,-2x2(3x3-4x2+12x-9)6x5-4x2+12x-9。

    FOIL Method
    ::东帝汶方法

    FOIL is a mnemonic device used to organize your thinking while multiplying binomials by binomials. To , we need to distribute each of the terms in the first binomial to the second binomial. 
    ::FOIL 是一个记忆设备, 用来组织您的思维, 同时将二进制乘以二进制。 为了 ., 我们需要将第一个二进制中的每个术语 分配到第二个二进制中 。

       FOIL Method
    ::东帝汶方法

    To multiply two binomials, we use the FOIL method. 
    ::要乘以两个二进制, 我们使用FOIL方法。

    ( a + b ) ( c + d ) = a c First, the first term in each binomial + a d Outer, the outside terms in this multiplication + b c Inner, the inside terms in this multiplication + b d Last, the last term in each binomial ( a + b ) ( c + d ) = a c + a d + b c + b d

    :伤心a+b) (c+d) = acFirst, 每一个二进制+外向器的第一个学期, 这个乘数+bcInner 的外部术语, 这个乘数+bdLast 的内在术语, 每一个二进制( a+b(c+d) = a+ad+bc+bd) = a+bc+bd

    Example 4
    ::例4

    Find ( 2 x + 5 ) ( x 7 ) .
    ::查找(2x+5)(x-7)

    Solution:  We use the FOIL method to organize our distributing of the terms in the first binomial to the second binomial and then add up the terms.
    ::解决方案:我们使用FOIL方法, 将术语在第一个二进制词和第二个二进制词中进行分配, 然后将术语加起来。

    F:   2 x x = 2 x 2 O:   2 x 7 = 14 x I:   5 x = 5 x L:   5 7 = 35 ( 2 x + 5 ) ( x 7 ) = 2 x 2 14 x + 5 x 35 = 2 x 2 9 x 35

    ::F: 2xxxx=2x2x2O: 2x=7}14xI: 5xx=5xL: 5*7*35(2x+5)(x-7)=2x2-14x+5x-35=2x2-9x-35

    by CK-12 demonstrates how to multiply binomials
    ::由 CK-12 演示如何乘以二元论。

     

    Example 5
    ::例5

    Find ( 7 3 x ) 2 .
    ::查找( 7- 3x) 2。

    Solution:  Since  ( 7 3 x ) 2 = ( 7 3 x ) ( 7 3 x ) , we can use the FOIL method to square this binomial. 
    ::解答:既然(7-3x)2=(7-3x)(7-3x)(7-3x),我们可以使用FOIL方法来平准这个二进制。

    F:   7 7 = 49 O:   7 3 x = 21 x I:   3 x 7 = 21 x L:   3 x 3 x = 9 x 2 ( 7 3 x ) ( 7 3 x ) = 49 21 x 21 x + 9 x 2 = 49 42 x + 9 x 2
     

    ::F: 7_7=49O: 73x=49O: 73x_21xI: -3x7=21xL: - 3x_3x3x=9x2x7-3x(7-3x)=49-21x-21x+9x2=49-42x9x2

    Example 6
    ::例6

    You are asked to frame a picture. You want the width of the frame to be 5 inches longer than the width of the glass and the height of the frame to be 7 inches longer than the height of the glass. You measure the glass and find the height to width ratio is 4:3. Describe the area that the picture in the frame will cover.
    ::您被要求设置图片框。 您希望框架的宽度比玻璃宽度长5英寸,框架的高度比玻璃的高度长7英寸。 您可以测量玻璃, 并发现其高度与宽度之比是 4: 3 。 请描述框中图片覆盖的区域 。

    Solution:   Since we do not know the exact dimensions of the picture, we can use x to represent the scale of the picture. That means the height will be 4 x   and the width is   3 x . So, the frame's height is   4 x + 7   and the frame's width is   3 x + 5 The area is the height times the width.
    ::解答: 由于我们不知道图片的准确尺寸, 我们可以使用 x 来表示图片的大小。 这意味着高度为 4x, 宽度为 3x。 因此, 框架的高度为 4x+7, 框架的宽度为 3x+5 。 区域是宽度的高度倍数 。

    A = ( 4 x + 7 ) ( 3 x + 5 ) = ( 4 x 3 x ) + ( 4 x 5 ) + ( 7 3 x ) + ( 7 5 ) = 12 x 2 + 20 x + 21 x + 35 = 12 x 2 + 41 x + 35
      
    ::A=( 4x+7)( 3x+5) =( 4x3x) +( 4x) +( 4x) 5) +( 7x3x) +( 7}5) +( 7= 12x2+20x+21x+35= 12x2+41x+35

    by Mathispower4u demonstrates how to determine the area of the shaded region by using our multiplication and subtraction of polynomials skills.
    ::Mathispower4u 展示了如何利用我们多面体技术的乘法和减法 来确定阴影地区的面积。

     

    Summary
    ::摘要

    • To multiply a monomial by a polynomial distribute the monomial to each one of the terms in the polynomial and use the product rule of exponents.
      ::将单体体乘以多面体将单体体体分配到多面体中每个术语中,并使用推手的产品规则。
    • To multiply a binomial by a binomial use the FOIL method to organize distributing the terms in the first binomial to the second binomial. 
      ::将二进制乘以二进制 使用FOIL方法 组织将第一个二进制的术语 分配给第二个二进制的术语

    Review
    ::回顾

    Multiply the polynomial expressions.
    ::乘以多边表达式 。

    1.  5 x ( x 2 6 x + 8 )
    ::1. 5x(x2-6x+8)

    2.  x 2 ( 8 x 3 11 x + 20 )
    ::2.-x2(8x3-11x+20)

    3.  7 x 3 ( 3 x 3 x 2 + 16 x + 10 )
    ::3. 7x3(3x3-x2+16x+10)

    4.  ( x 2 + 4 ) ( x 5 )
    ::4. (x2+4)(x-5)

    5.  ( 3 x 2 4 ) ( 2 x 7 )
    ::5. (3x2-4)(2x-7)

    6.  ( 9 x 2 ) ( x + 2 )
    ::6. (9-x2(x+2))

    7.  ( 5 x 12 ) 2
    ::7. (5x-12)2

    8.  ( 4 x + 9 ) 2
    ::8. (4x+9)2

    9.  x 4 ( 2 x + 11 ) ( 3 x 2 1 )
    ::9.-x4(2xx+11)(3x2-1)

    10.  1 2 x 3 ( 4 x 2 + 6 x ) ( 9 x + 5 )
    ::10.-12x3(4x2+6x)(-9x+5)

    Explore More
    ::探索更多

    1. T he formula for the volume of a pyramid is V = 1 3 B h , where B is the area of the base of the pyramid and h is the pyramid's height. What if the area of the base of a pyramid were x 2 + 6 x + 8   and the height were 9 x ? What would the volume of the pyramid be?
    ::1. 金字塔体积的公式是V=13Bh,B是金字塔底部的面积,h是金字塔的高度;如果金字塔底部的面积是x2+6x+8,而高度是9x,金字塔的体积是多少?

    2. Find the volume of the figure below. 
    ::2. 下图的数值如下。

    3.  Suppose a factory needs to increase the number of units it outputs. Currently it has w workers, and on average, each worker outputs u units. If it increases the number of workers by 100 and makes changes to its processes so that each worker outputs 20 more units on average, how many total units will it output?
    ::3. 假设一个工厂需要增加其产出单位的数量,目前它有工人,平均每个工人产出单位,如果它将工人人数增加100人并改变其流程,使每个工人平均多生产20个单位,它将产出多少个单位?

    Answers to Review and Explore More Problems
    ::对审查和探讨更多问题的答复

    Please see the Appendix.  
    ::请参看附录。