Section outline

  • Each person has two parents, and each of those parents has two parents, and so on. How many ancestors does a person have if we go back 10 generations? 
    ::每个人有两个父母,每个父母都有两个父母,等等。 如果我们再过10代,一个人有多少祖先?

    This is a geometric . We cover how to find the sum of a geometric sequence in this section. 
    ::这是几何。我们研究如何在这个部分找到几何序列的总和。

    lesson content

    Finite Sums of Geometric Sequences
    ::几几何序列的有限总和

    As with arithmetic series,  there is a specific rule that can be used to find the sum of a geometric sequence algebraically. Let's look at a finite geometric sequence and derive this rule.
    ::与计算序列一样,有一个具体的规则可以用来找到几何序列的代数总和。让我们看看一个有限的几何序列并得出这一规则。

    For a geometric sequence, we are given the formula  a n = a 1 r n 1 . The sum of the 1st n terms of a geometric sequence is: S n = a 1 + a 1 r + a 1 r 2 + a 1 r 3 + + a 1 r n 2 + a 1 r n 1


    ::对于几何序列,我们被给定公式 an=a1rn-1. 几何序列第一条 n 条件的总和是: Sn=a1+a1r+a1r2+a1r2+a1r3+...+a1r_2+a1rn_1

    Now, factor out a 1 to get a 1 ( 1 + r 2 + r 3 + + r n 2 + r n 1 ) . For what remains in parentheses, if we multiply this by ( 1 r ) as shown below we can simplify the sum:
    ::现在, 乘以 a1 以获得 a1 (1+r2+r3+...+rn- 2+rn- 1) 。 对于括号中保留的内容, 如果我们将括号乘以 1 乘以 (1-r) 如下所示, 我们可以简化总和 :

    ( 1 r ) ( 1 + r + r 2 + r 3 + + r n 2 + r n 1 ) = ( 1 + r + r 2 + r 3 + + r n 2 + r n 1 r r 2 r 3 r 4 r n 1 r n ) = 1 + ( r r ) + ( r 2 r 2 ) + ( r 3 r 3 ) + + ( r n 2 r n 2 ) + ( r n 1 r n 1 ) r n = ( 1 r ) n


    :sad1-r)(1+r+r+r2+r3+...)+(1+r+r+r2+r_2+r3+...)=(1+r+r+r+r+r2+r2+r3+r3+r3+r3+r3+...)+(1+r+r+r+r+r+r+r2+r2+r2+r3+r1+...)+(r2-r+r2+r2+r_1)-rn=1+(r2-r_r__rn)+(r2+r+(r2-r2+r2+r2+r3+r3+...+...+...+(r-r__2+_2+_2+...)+(rn+(r-r-r_1)-rn=1+(r_rn)+(r_1-r+1+_r+_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    By multiplying the sum by 1 r , we were able to cancel out all the middle terms. However, we cannot just multiply by a factor of 1 r , but we can multiply by 1 or   1 r 1 r
    ::通过将总和乘以1-r,我们得以取消所有中间条件。然而,我们不能仅仅乘以1-r,但我们可以乘以1或1-r1-r。

    So  the sum of a finite geometric sequence is
    ::所以一个有限的几几何序列的总和是

    S n = a 1 + a 1 r + a 1 r 2 + a 1 r 3 + + a 1 r n 2 + a 1 r n 1 = a 1 ( 1 + r 2 + r 3 + + r n 2 + r n 1 ) 1 r 1 r = a 1 ( 1 r n ) 1 r


    ::Sn=a1+a1+a1r+a1r2+a1r3+...+a1rn-2+a1rn_1=a1(1+r2+r3+...+r2+r3+...+rn2+rn_1)1_r1-r=a1(1-rn)1-r=a1-rr

       Finite Sum of a Geometric Sequence
    ::几何序列精度总和

    The sum, S n , of the 1st n terms of a geometric sequence is 
    ::几何序列第一 n 条件的和Sn是

    S n = a 1 ( 1 r n ) 1 r ,

    where  n  is the number of terms,  a 1  is the 1st term , and  r  is the common ratio, and r 1 .
    ::Sn=a1(1-rn)1-r,其中n为术语数,a1为第一学期,r为共同比率,r为第1学期。

    Example 1
    ::例1

    Find 10 n = 1 1 32 ( - 2 ) n 1 .
    ::查找 10n=1132(-2-2)-n-1。

    Solution: Using the formula, a 1 = 1 32 , r = - 2 , and n = 10 .
    ::解决办法:使用公式,a1=132,r=2,n=10。

    S 10 = 1 32 ( 1 ( - 2 ) 10 ) 1 ( - 2 ) = 1 32 ( 1 1024 ) 3 = - 341 32


    ::S10=132(1-2)-(-2)10-1-2-2=132(1)-10243=-34132

    Example 2
    ::例2

    Evaluate 8 n = 3 2 ( - 3 ) n 1 .
    ::评价8n=32(-3-)n-1。

    Solution:  Since we are asked to find the sum of the 3 r d through 8 t h terms, we will consider a 3 as the 1st term. The 3rd term is a 3 = 2 ( - 3 ) 2 = 2 ( 9 ) = 18 . Since we are starting with term three, we will be summing 6 terms, a 3 + a 4 + a 5 + a 6 + a 7 + a 8 , in total. We can use the rule for the sum of a geometric sequence now, with a 1 = 18 , r = - 3 , and n = 6 to find the sum:
    ::解答:既然我们被要求找到第三至第八学期的总和, 我们将考虑将a3作为第一学期。 第三个学期为a3=2( 3)2=2( 9)=18。 由于我们从三学期开始, 我们总共将总结6学期, a3+a4+a5+a5+a6+a7+a8。 我们现在可以使用规则来计算几何序列的总和, 以a1=18, r=3和n=6来查找总和 :

    8 n = 3 2 ( - 3 ) n 1 = 18 ( 1 ( - 3 ) 6 ) 1 ( - 3 ) = - 3 , 276


    ::8=32(-3)-(三)-(一)-18(一)-((三)-6)-1-(三)=3,276

    Example 3
    ::例3

    Each person has two parents, and each of those parents has two parents, and so on. How many ancestors does a person have if we go back 10 generations?
    ::每个人有两个父母,每个父母都有两个父母,等等。 如果我们再过10代,一个人有多少祖先?

    Solution: We start with 2 parents , so that is  a 1 . The common ratio is also 2, and we are considering 10 generations—that is, n = 10 .
    ::解决办法:我们从两个父母开始,所以这就是a1. 共同比率也是2,我们考虑的是10代人,即n=10。

    S 10 = 2 ( 1 2 10 ) 1 2 = - 2 , 046 - 1 = 2 , 046


    ::S10=2(1-1-210)1-2=2,046-1=2,046

    Each person has 2,046 ancestors going back 10 generations.   
    ::每个人有2,046个祖先可追溯到10代。

    by Mathispower4u introduces geometric series and demonstrates how to use the formula. 
    ::由 Mathispower4u 介绍几何序列并演示如何使用公式。

    Example 4
    ::例4

    Find the 1st term and the n t h term rule for a geometric sequence in which the sum of the 1st 5 terms is 242, and the common ratio is 3.
    ::查找一个几何序列的第一个学期和 n 学期规则,其中第一个学期和第一个学期的总和是 242, 共同比率是 3。

    Solution:   S ubstitute  what we know into the formula for the sum, and solve for the 1st term:
    ::解决方案: 将我们所知道的东西 替换到总和的公式中, 并解决第一个学期:

    242 = a 1 ( 1 3 5 ) 1 3 242 = a 1 ( - 242 ) - 2 242 = 121 a 1 a 1 = 2


    ::242=a1(1-35)1-3242=a1(-242)-2242=121a1a1=2

    The 1st term is 2 and a n = 2 ( 3 ) n 1 .
    ::第一个学期是2年,一个=2(3)n-1。

    Example 5
    ::例5

    If the sum of the 1st seven terms in a geometric sequence is 215 8 and r = - 1 2 , find the 1st term and the n t h term rule.
    ::如果几何序列中第一七个条件的总和为2158和r=12,则找到第一个条件和nth条件规则。

    Solution: We can substitute what we know into the formula for the sum of a geometric sequence and solve for a 1 .
    ::解答:我们可以用我们所知道的, 来替代公式中的几何序列和a1的解答。

    215 8 = a 1 ( 1 ( - 1 2 ) 7 ) 1 ( - 1 2 ) 215 8 = a 1 ( 43 64 ) a 1 = ( 64 43 ) ( 215 8 ) = 40


    ::2158=a1(1-(-12)7)1-(-12)2158=a1(4364)a1=(6443)(2158)=40

    The n t h term rule is a n = 40 ( - 1 2 ) n 1
    ::nth 术语规则为 an=40(-12)n- 1

    Example 6
    ::例6

    Charlie deposits $1,000 on the 1st of each year into his investment account. The account grows at a rate of 8% per year. How much money is in the account on the 1st day of the 11 t h year?
    ::Charlie每年1月1日将1 000美元存入投资账户。该账户每年增长8%。第11年第1天的账户里有多少钱?

    Solution: First, consider what is happening here on the 1st day of each year. On the 1st day of the 1st year, $1,000 is deposited. On the 1st day of the 2nd year, $1,000 is deposited and the previously deposited $1,000 earns 8% interest or grows by a factor of 1.08. On the 1st day of the 3rd year, another $1,000 is deposited, the previous year's deposit earns 8% interest, and the original deposit earns 8% interest for two years (we multiply by 1.08 2 ).
    ::解决办法:首先,考虑每年第1天这里发生的情况。第一年第1天,存入1 000美元。第二年第1天,存入1 000美元,以前存入的1 000美元赚取8%的利息或增加1.08倍。第三年第1天,再存入1 000美元,上一年的存款赚取8%的利息,最初存款在两年里赚取8%的利息(我们乘以1.082)。

    Sum Year   1 : 1 , 000 Sum Year   2 : 1 , 000 + 1 , 000 ( 1.08 ) Sum Year   3 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 Sum Year   4 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 + 1 , 000 ( 1.08 ) 3 Sum Year   11 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 + 1 , 000 ( 1.08 ) 3 + + 1 , 000 ( 1.08 ) 9 + 1 , 000 ( 1.08 ) 10


    ::总年数 1: 1 000-08+1 000(1 000)+1 000(1.08)+1 000(1 000)+1 000(1.082)+1 000(1.082)+1 000(1.008)+1 000(1.083)+1 000(1 000)+1 000(1 000)+1 000(1 000)+1 000(1.083+1 000)+1 000(1.083+...+1 000)+1 000(1.089+1 000)10

    There are 11 terms in this series because on the 1st day of the 11 t h year, we make our final deposit and the original deposit earns interest for 10 years.
    ::这个系列有11个条件 因为11年的第1天 我们做最后的存款 原始的存款能赚10年的利息

    This sequence is geometric. The 1st term is 1,000, the common ratio is 1.08, and n = 11 . Now we can calculate the sum using the formula, and determine the value of the investment account at the start of the 11 t h year.
    ::这是几何序列。 第一个学期是 1 000, 共同比率是 1. 08 和 n= 11。 现在我们可以用公式来计算总和, 并确定第 11 年开始时投资账户的价值 。

    S 11 = 1 , 000 ( 1 1.08 11 ) 1 1.08 = 16 , 645.48746 $ 16 , 645.49


    ::S11=1,000(1-0811-1)1-1.08=16 645.48746 16 645.49美元

    Summary
    ::摘要

    • The sum of a finite number of terms of a geometric sequence is  S n = a 1 ( 1 r n ) 1 r ,   where n  is the number of terms, a 1  is the 1st term, and r  is the common ratio.
      ::几何序列的限定术语数总和是 Sn=a1(1-rn)1-r, 其中n为术语数,a1为第一个术语,r为共同比率。

    Review
    ::回顾

    Use the formula for the sum of a geometric sequence to find the sum of the 1st five terms.
    ::使用几何序列总和的公式来找到第一五个条件的总和。

    1.  a n = 36 ( 2 3 ) n 1
    ::1. an=36(23)n-1

    2.  a n = 9 ( - 2 ) n 1
    ::2. an=9(-2-2)-1

    3.  a n = 5 ( - 1 ) n 1
    ::3. an=5(-1-1-1)

    4.  a n = 8 25 ( 5 2 ) n 1
    ::4. a=825(52)n-1

    5.  a n = 2 3 ( - 3 4 ) n 1
    ::5. an=23(-34-34n-1)

    Evaluate the following series:
    ::评估以下系列:

    6.  4 n = 1 ( - 1 ) ( 1 2 ) n 1
    ::6. 4n=1(-1)(12-1)

    7.  8 n = 2 ( 128 ) ( 1 4 ) n 1
    ::7. 8=2(128)(14-1)

    8.  7 n = 2 125 64 ( 4 5 ) n 1
    ::8. 7n=212564(45n-1)

    9.  11 n = 5 1 32 ( - 2 ) n 1
    ::9. 11n=5132(-1-2)-1

    Given the sum and the common ratio, find the n t h term rule for each sequence .
    ::根据总和和共同比率,为每个序列找到nth术语规则。

    10.  6 n = 1 a n = - 63 and r = - 2
    ::10. 6n=1an=-63和r=2

    11.  4 n = 1 a n = 671 and r = 5 6
    ::11. 4n=1an=671和r=56

    12.  5 n = 1 a n = 122 and r = - 3
    ::12. 5n=1an=122和r=3

    13.  7 n = 2 a n = - 63 2 and r = - 1 2
    ::13. 7n=2an=632和r=12

    Explore More
    ::探索更多

    1. Sapna's grandparents deposit $1,200 into a college savings account on her 5 t h birthday. They continue to make this birthday deposit each year until making the final deposit on her 18 t h birthday. If the account earns 5% interest annually, how much is there after the final deposit?
    ::1. 萨普拉的祖父母在她五岁生日时将1 200美元存入大学储蓄账户,他们每年继续将这一生日存款存入大学储蓄账户,直到她十八岁生日最后存款。如果该账户每年赚取5%的利息,在最后存款之后有多少?

    2. Jeremy wants to have saved $10,000 in five years. If he makes annual deposits on the 1st of each year, and the account earns 4.5% interest annually, how much should he deposit each year to have $10,000 in the account after the final deposit on the 1st of the 6 t h year? Round your answer to the nearest $100.
    ::2. Jeremy想在五年内节省10 000美元,如果他每年在第一年存款,账户每年赚取4.5%的利息,那么他每年应在第六年第一期最后存款之后存入10 000美元多少?

    3. You are saving. On the 1st of each month, you deposit $100  into your savings account. The account grows at a rate of 0.5% per month. How much money is in your account on the 1st day of the 9 t h month?
    ::3. 储蓄:每个月一日,将100美元存入储蓄账户,每月增长0.5个百分点,9个月第1日的存款有多少?

    4. The population of a town was 2,400 in 2010. From 2010 to 2015, the population increased 3% per year. What was the population of the town in 2015? 
    ::4. 2010年,一个城镇的人口为2,400人,2010年至2015年,人口每年增长3%,2015年该城镇的人口是多少?

    5. In 1995, the total box office revenue in U.S. movie theaters was about $5.02 billion. From 1995 to 2008, box office revenue increased by about 5.9% per year. What was the total box office revenue between 1995 and 2008? Round your answer to the nearest billion dollars.
    ::5. 1995年,美国电影院的票面办公室总收入约为50.2亿美元,1995年至2008年,票面办公室收入每年增长约5.9%,1995年至2008年的票面办公室收入总额是多少?

    6. A fisherman harvested 350 kilograms of fish on Monday. From Monday through Friday, the amount of fish he harvested each day increased by 10%. What was the total amount of fish he harvested during these five days?
    ::6. 星期一,一名渔民捕捞350公斤鱼,从星期一到星期五,每天捕捞的鱼量增加了10%,这五天捕捞的鱼总量是多少?

    7. A new website got 4,000 page views on the 1st day. During the next four days, the page views increased by 30% each day. What was the total amount of page views in the 1st five days?
    ::7. 一个新的网站在第一天的网页浏览量为4,000页,在接下来的四天中,网页浏览量每天增加30%,头五天的页面浏览量是多少?

    8.  Sam deposits $50 on the 1st of each month into an account that earns 0.5% interest each month. To the nearest dollar, how much is in the account after Sam makes his last deposit on the 1st day of the 5th year (the 49 t h month)?
    ::8. Sam每月1月1日将50美元存入每月赚取0.5 % 利息的帐户,至最近的美元,在Sam在5年(第49个月)第1天最后存款之后,帐户内有多少钱?

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.
    ::请参看附录。