13.7 确定有限几何序列总和
章节大纲
-
Each person has two parents, and each of those parents has two parents, and so on. How many ancestors does a person have if we go back 10 generations?
::每个人有两个父母,每个父母都有两个父母,等等。 如果我们再过10代,一个人有多少祖先?This is a geometric . We cover how to find the sum of a geometric sequence in this section.
::这是几何。我们研究如何在这个部分找到几何序列的总和。Finite Sums of Geometric Sequences
::几几何序列的有限总和As with arithmetic series, there is a specific rule that can be used to find the sum of a geometric sequence algebraically. Let's look at a finite geometric sequence and derive this rule.
::与计算序列一样,有一个具体的规则可以用来找到几何序列的代数总和。让我们看看一个有限的几何序列并得出这一规则。For a geometric sequence, we are given the formula a n = a 1 r n − 1 . The sum of the 1st n terms of a geometric sequence is: S n = a 1 + a 1 r + a 1 r 2 + a 1 r 3 + … + a 1 r n − 2 + a 1 r n − 1
::对于几何序列,我们被给定公式 an=a1rn-1. 几何序列第一条 n 条件的总和是: Sn=a1+a1r+a1r2+a1r2+a1r3+...+a1r_2+a1rn_1Now, factor out a 1 to get a 1 ( 1 + r 2 + r 3 + … + r n − 2 + r n − 1 ) . For what remains in parentheses, if we multiply this by ( 1 − r ) as shown below we can simplify the sum:
::现在, 乘以 a1 以获得 a1 (1+r2+r3+...+rn- 2+rn- 1) 。 对于括号中保留的内容, 如果我们将括号乘以 1 乘以 (1-r) 如下所示, 我们可以简化总和 :( 1 − r ) ( 1 + r + r 2 + r 3 + … + r n − 2 + r n − 1 ) = ( 1 + r + r 2 + r 3 + … + r n − 2 + r n − 1 − r − r 2 − r 3 − r 4 − … − r n − 1 − r n ) = 1 + ( r − r ) + ( r 2 − r 2 ) + ( r 3 − r 3 ) + … … + ( r n − 2 − r n − 2 ) + ( r n − 1 − r n − 1 ) − r n = ( 1 − r ) n
:1-r)(1+r+r+r2+r3+...)+(1+r+r+r2+r_2+r3+...)=(1+r+r+r+r+r2+r2+r3+r3+r3+r3+r3+...)+(1+r+r+r+r+r+r+r2+r2+r2+r3+r1+...)+(r2-r+r2+r2+r_1)-rn=1+(r2-r_r__rn)+(r2+r+(r2-r2+r2+r2+r3+r3+...+...+...+(r-r__2+_2+_2+...)+(rn+(r-r-r_1)-rn=1+(r_rn)+(r_1-r+1+_r+_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
By multiplying the sum by 1 − r , we were able to cancel out all the middle terms. However, we cannot just multiply by a factor of 1 − r , but we can multiply by 1 or 1 − r 1 − r .
::通过将总和乘以1-r,我们得以取消所有中间条件。然而,我们不能仅仅乘以1-r,但我们可以乘以1或1-r1-r。So the sum of a finite geometric sequence is
::所以一个有限的几几何序列的总和是S n = a 1 + a 1 r + a 1 r 2 + a 1 r 3 + … + a 1 r n − 2 + a 1 r n − 1 = a 1 ( 1 + r 2 + r 3 + … + r n − 2 + r n − 1 ) 1 − r 1 − r = a 1 ( 1 − r n ) 1 − r
::Sn=a1+a1+a1r+a1r2+a1r3+...+a1rn-2+a1rn_1=a1(1+r2+r3+...+r2+r3+...+rn2+rn_1)1_r1-r=a1(1-rn)1-r=a1-rrFinite Sum of a Geometric Sequence
::几何序列精度总和The sum, S n , of the 1st n terms of a geometric sequence is
::几何序列第一 n 条件的和Sn是S n = a 1 ( 1 − r n ) 1 − r ,
::Sn=a1(1-rn)1-r,其中n为术语数,a1为第一学期,r为共同比率,r为第1学期。Example 1
::例1Find 10 ∑ n = 1 1 32 ( - 2 ) n − 1 .
::查找 10n=1132(-2-2)-n-1。Solution: Using the formula, a 1 = 1 32 , r = - 2 , and n = 10 .
::解决办法:使用公式,a1=132,r=2,n=10。S 10 = 1 32 ( 1 − ( - 2 ) 10 ) 1 − ( - 2 ) = 1 32 ( 1 − 1024 ) 3 = - 341 32
::S10=132(1-2)-(-2)10-1-2-2=132(1)-10243=-34132Example 2
::例2Evaluate 8 ∑ n = 3 2 ( - 3 ) n − 1 .
::评价8n=32(-3-)n-1。Solution: Since we are asked to find the sum of the 3 r d through 8 t h terms, we will consider a 3 as the 1st term. The 3rd term is a 3 = 2 ( - 3 ) 2 = 2 ( 9 ) = 18 . Since we are starting with term three, we will be summing 6 terms, a 3 + a 4 + a 5 + a 6 + a 7 + a 8 , in total. We can use the rule for the sum of a geometric sequence now, with a 1 = 18 , r = - 3 , and n = 6 to find the sum:
::解答:既然我们被要求找到第三至第八学期的总和, 我们将考虑将a3作为第一学期。 第三个学期为a3=2( 3)2=2( 9)=18。 由于我们从三学期开始, 我们总共将总结6学期, a3+a4+a5+a5+a6+a7+a8。 我们现在可以使用规则来计算几何序列的总和, 以a1=18, r=3和n=6来查找总和 :8 ∑ n = 3 2 ( - 3 ) n − 1 = 18 ( 1 − ( - 3 ) 6 ) 1 − ( - 3 ) = - 3 , 276
::8=32(-3)-(三)-(一)-18(一)-((三)-6)-1-(三)=3,276Example 3
::例3Each person has two parents, and each of those parents has two parents, and so on. How many ancestors does a person have if we go back 10 generations?
::每个人有两个父母,每个父母都有两个父母,等等。 如果我们再过10代,一个人有多少祖先?Solution: We start with 2 parents , so that is a 1 . The common ratio is also 2, and we are considering 10 generations—that is, n = 10 .
::解决办法:我们从两个父母开始,所以这就是a1. 共同比率也是2,我们考虑的是10代人,即n=10。S 10 = 2 ( 1 − 2 10 ) 1 − 2 = - 2 , 046 - 1 = 2 , 046
::S10=2(1-1-210)1-2=2,046-1=2,046Each person has 2,046 ancestors going back 10 generations.
::每个人有2,046个祖先可追溯到10代。by Mathispower4u introduces geometric series and demonstrates how to use the formula.
::由 Mathispower4u 介绍几何序列并演示如何使用公式。Example 4
::例4Find the 1st term and the n t h term rule for a geometric sequence in which the sum of the 1st 5 terms is 242, and the common ratio is 3.
::查找一个几何序列的第一个学期和 n 学期规则,其中第一个学期和第一个学期的总和是 242, 共同比率是 3。Solution: S ubstitute what we know into the formula for the sum, and solve for the 1st term:
::解决方案: 将我们所知道的东西 替换到总和的公式中, 并解决第一个学期:242 = a 1 ( 1 − 3 5 ) 1 − 3 242 = a 1 ( - 242 ) - 2 242 = 121 a 1 a 1 = 2
::242=a1(1-35)1-3242=a1(-242)-2242=121a1a1=2The 1st term is 2 and a n = 2 ( 3 ) n − 1 .
::第一个学期是2年,一个=2(3)n-1。Example 5
::例5If the sum of the 1st seven terms in a geometric sequence is 215 8 and r = - 1 2 , find the 1st term and the n t h term rule.
::如果几何序列中第一七个条件的总和为2158和r=12,则找到第一个条件和nth条件规则。Solution: We can substitute what we know into the formula for the sum of a geometric sequence and solve for a 1 .
::解答:我们可以用我们所知道的, 来替代公式中的几何序列和a1的解答。215 8 = a 1 ( 1 − ( - 1 2 ) 7 ) 1 − ( - 1 2 ) 215 8 = a 1 ( 43 64 ) a 1 = ( 64 43 ) ( 215 8 ) = 40
::2158=a1(1-(-12)7)1-(-12)2158=a1(4364)a1=(6443)(2158)=40The n t h term rule is a n = 40 ( - 1 2 ) n − 1
::nth 术语规则为 an=40(-12)n- 1Example 6
::例6Charlie deposits $1,000 on the 1st of each year into his investment account. The account grows at a rate of 8% per year. How much money is in the account on the 1st day of the 11 t h year?
::Charlie每年1月1日将1 000美元存入投资账户。该账户每年增长8%。第11年第1天的账户里有多少钱?Solution: First, consider what is happening here on the 1st day of each year. On the 1st day of the 1st year, $1,000 is deposited. On the 1st day of the 2nd year, $1,000 is deposited and the previously deposited $1,000 earns 8% interest or grows by a factor of 1.08. On the 1st day of the 3rd year, another $1,000 is deposited, the previous year's deposit earns 8% interest, and the original deposit earns 8% interest for two years (we multiply by 1.08 2 ).
::解决办法:首先,考虑每年第1天这里发生的情况。第一年第1天,存入1 000美元。第二年第1天,存入1 000美元,以前存入的1 000美元赚取8%的利息或增加1.08倍。第三年第1天,再存入1 000美元,上一年的存款赚取8%的利息,最初存款在两年里赚取8%的利息(我们乘以1.082)。Sum Year 1 : 1 , 000 Sum Year 2 : 1 , 000 + 1 , 000 ( 1.08 ) Sum Year 3 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 Sum Year 4 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 + 1 , 000 ( 1.08 ) 3 ⋮ Sum Year 11 : 1 , 000 + 1 , 000 ( 1.08 ) + 1 , 000 ( 1.08 ) 2 + 1 , 000 ( 1.08 ) 3 + … + 1 , 000 ( 1.08 ) 9 + 1 , 000 ( 1.08 ) 10
::总年数 1: 1 000-08+1 000(1 000)+1 000(1.08)+1 000(1 000)+1 000(1.082)+1 000(1.082)+1 000(1.008)+1 000(1.083)+1 000(1 000)+1 000(1 000)+1 000(1 000)+1 000(1.083+1 000)+1 000(1.083+...+1 000)+1 000(1.089+1 000)10There are 11 terms in this series because on the 1st day of the 11 t h year, we make our final deposit and the original deposit earns interest for 10 years.
::这个系列有11个条件 因为11年的第1天 我们做最后的存款 原始的存款能赚10年的利息This sequence is geometric. The 1st term is 1,000, the common ratio is 1.08, and n = 11 . Now we can calculate the sum using the formula, and determine the value of the investment account at the start of the 11 t h year.
::这是几何序列。 第一个学期是 1 000, 共同比率是 1. 08 和 n= 11。 现在我们可以用公式来计算总和, 并确定第 11 年开始时投资账户的价值 。S 11 = 1 , 000 ( 1 − 1.08 11 ) 1 − 1.08 = 16 , 645.48746 ≈ $ 16 , 645.49
::S11=1,000(1-0811-1)1-1.08=16 645.48746 16 645.49美元Summary
::摘要-
The sum of a finite number of terms of a geometric sequence is
S
n
=
a
1
(
1
−
r
n
)
1
−
r
,
where
n
is the number of terms,
a
1
is the 1st term, and
r
is the common ratio.
::几何序列的限定术语数总和是 Sn=a1(1-rn)1-r, 其中n为术语数,a1为第一个术语,r为共同比率。
Review
::回顾Use the formula for the sum of a geometric sequence to find the sum of the 1st five terms.
::使用几何序列总和的公式来找到第一五个条件的总和。1. a n = 36 ( 2 3 ) n − 1
::1. an=36(23)n-12. a n = 9 ( - 2 ) n − 1
::2. an=9(-2-2)-13. a n = 5 ( - 1 ) n − 1
::3. an=5(-1-1-1)4. a n = 8 25 ( 5 2 ) n − 1
::4. a=825(52)n-15. a n = 2 3 ( - 3 4 ) n − 1
::5. an=23(-34-34n-1)Evaluate the following series:
::评估以下系列:6. 4 ∑ n = 1 ( - 1 ) ( 1 2 ) n − 1
::6. 4n=1(-1)(12-1)7. 8 ∑ n = 2 ( 128 ) ( 1 4 ) n − 1
::7. 8=2(128)(14-1)8. 7 ∑ n = 2 125 64 ( 4 5 ) n − 1
::8. 7n=212564(45n-1)9. 11 ∑ n = 5 1 32 ( - 2 ) n − 1
::9. 11n=5132(-1-2)-1Given the sum and the common ratio, find the n t h term rule for each sequence .
::根据总和和共同比率,为每个序列找到nth术语规则。10. 6 ∑ n = 1 a n = - 63 and r = - 2
::10. 6n=1an=-63和r=211. 4 ∑ n = 1 a n = 671 and r = 5 6
::11. 4n=1an=671和r=5612. 5 ∑ n = 1 a n = 122 and r = - 3
::12. 5n=1an=122和r=313. 7 ∑ n = 2 a n = - 63 2 and r = - 1 2
::13. 7n=2an=632和r=12Explore More
::探索更多1. Sapna's grandparents deposit $1,200 into a college savings account on her 5 t h birthday. They continue to make this birthday deposit each year until making the final deposit on her 18 t h birthday. If the account earns 5% interest annually, how much is there after the final deposit?
::1. 萨普拉的祖父母在她五岁生日时将1 200美元存入大学储蓄账户,他们每年继续将这一生日存款存入大学储蓄账户,直到她十八岁生日最后存款。如果该账户每年赚取5%的利息,在最后存款之后有多少?2. Jeremy wants to have saved $10,000 in five years. If he makes annual deposits on the 1st of each year, and the account earns 4.5% interest annually, how much should he deposit each year to have $10,000 in the account after the final deposit on the 1st of the 6 t h year? Round your answer to the nearest $100.
::2. Jeremy想在五年内节省10 000美元,如果他每年在第一年存款,账户每年赚取4.5%的利息,那么他每年应在第六年第一期最后存款之后存入10 000美元多少?3. You are saving. On the 1st of each month, you deposit $100 into your savings account. The account grows at a rate of 0.5% per month. How much money is in your account on the 1st day of the 9 t h month?
::3. 储蓄:每个月一日,将100美元存入储蓄账户,每月增长0.5个百分点,9个月第1日的存款有多少?4. The population of a town was 2,400 in 2010. From 2010 to 2015, the population increased 3% per year. What was the population of the town in 2015?
::4. 2010年,一个城镇的人口为2,400人,2010年至2015年,人口每年增长3%,2015年该城镇的人口是多少?5. In 1995, the total box office revenue in U.S. movie theaters was about $5.02 billion. From 1995 to 2008, box office revenue increased by about 5.9% per year. What was the total box office revenue between 1995 and 2008? Round your answer to the nearest billion dollars.
::5. 1995年,美国电影院的票面办公室总收入约为50.2亿美元,1995年至2008年,票面办公室收入每年增长约5.9%,1995年至2008年的票面办公室收入总额是多少?6. A fisherman harvested 350 kilograms of fish on Monday. From Monday through Friday, the amount of fish he harvested each day increased by 10%. What was the total amount of fish he harvested during these five days?
::6. 星期一,一名渔民捕捞350公斤鱼,从星期一到星期五,每天捕捞的鱼量增加了10%,这五天捕捞的鱼总量是多少?7. A new website got 4,000 page views on the 1st day. During the next four days, the page views increased by 30% each day. What was the total amount of page views in the 1st five days?
::7. 一个新的网站在第一天的网页浏览量为4,000页,在接下来的四天中,网页浏览量每天增加30%,头五天的页面浏览量是多少?8. Sam deposits $50 on the 1st of each month into an account that earns 0.5% interest each month. To the nearest dollar, how much is in the account after Sam makes his last deposit on the 1st day of the 5th year (the 49 t h month)?
::8. Sam每月1月1日将50美元存入每月赚取0.5 % 利息的帐户,至最近的美元,在Sam在5年(第49个月)第1天最后存款之后,帐户内有多少钱?Answers for Review and Explore More Problems
::回顾和探讨更多问题的答复Please see the Appendix.
::请参看附录。 -
The sum of a finite number of terms of a geometric sequence is
S
n
=
a
1
(
1
−
r
n
)
1
−
r
,
where
n
is the number of terms,
a
1
is the 1st term, and
r
is the common ratio.