13.9 帕斯卡尔的三角和二民族扩张中的系数
Section outline
-
Pascal's Triangle is a triangle that contains many patterns. One of its many uses is to determine the number of moves necessary to reach a certain square on a chessboard if the piece can make moves only to the right and down (like a rook) 1 .
::Pascal 三角形是一个包含许多模式的三角形。 它的多种用途之一是确定在棋盘上达到某一方形所需的动作数量, 如果棋子只能向右和向下移动( 如 rook) 1 。In this section, w e discuss Pascal's Triangle and a formula for finding the values in the triangle.
::在此部分,我们讨论帕斯卡尔的三角形 以及一个在三角形中找到值的公式。Pascal's Triangle
::帕斯卡尔三角Pascal's Triangle can be used to find the coefficients of a binomial expansion, among other applications. Below is an image of the 1st seven rows of Pascal's Triangle, which we number as row 0 to row 6. (The reasons for labeling the rows of the triangle like this will be clear in the next section, The Binomial Theorem. )
::Pascal 三角形可以用来查找二进制扩展的系数, 以及其他应用。 下面是Pascal 三角形第一七行的图像, 我们将其编号为第 0 行到 第 6 行 。 (像这样标出三角形行的原因将在下一节“ Binomial 理论” 中清楚说明 。)Each row begins and ends with a 1. Each "interior" value in each row is the sum of the two numbers above it. For example, 2 + 1 = 3 and 10 + 10 = 20 , above. This pattern produces the symmetry in the triangle.
::每行开头和结尾处都有一行。每行的每个“内值”是上方两个数字的和。例如,上面的 2+1=3 和 10+10=20。此图示在三角形中产生对称。Let's continue the triangle to determine the elements in the 8 t h row of Pascal's Triangle.
::让我们继续三角形来决定 帕斯卡尔三角形第八排的元素Following the pattern of adding adjacent elements to get the elements in the next row, we find that the 7th row is 1 7 21 35 35 21 7 1.
::按照增加相邻元素以便在下一行获得元素的模式,我们发现第七行是1 7 21 35 35 21 7 1。Continuing the pattern of adding adjacent elements to get the elements in the next row, we find that the 8th row is
1 8 28 56 70 56 28 8 1.
::继续增加相邻元素以获得下一行元素的模式, 我们发现第八排是1 8 28 56 70 56 28 8 1。by CK-12 shows an example of how to use Pascal's Triangle.
::CK-12展示了如何使用帕斯卡尔三角形的例子。Write out the elements in row 10 of Pascal's Triangle.
::将元素写在帕斯卡尔三角区第10排Solution: We continued the triangle to find the 8th row earlier and determined it to be
::解答:我们继续三角形 先前找到了第八排,确定是1 8 28 56 70 56 28 8 1.
Subsequently, the 9th row is
::随后,第九排是1 9 36 84 126 126 84 36 9 1.
And, the 10th row is
::第十排是1 10 45 120 210 252 210 120 45 10 1.
Example 2
::例2Determine the number of possible routes to reach a square 3 spaces down and 3 spaces to the right on a chessboard if the piece can make moves only to the right and down (like a rook).
::如果棋子只能向右移动和向下移动(如rook),确定向下到达方方3空格和在棋盘右方3空格的可能路径数。Solution: The rows of Pascal's Triangle, as shown along the diagonals, determine the number of possible routes. A space that is 3 spaces down and 3 spaces right has 20 possible ways of reaching it.
::解决方案: 沿对角线显示的帕斯卡尔三角地带的行确定可能路线的数量。 向下3个空位和向右3个空位的空间有20种可能的到达途径。Combinations
::合并Another way to find the values in Pascal's Triangle or the coefficients of a binomial expansion is by using combinations. Combinations are often used in probability to find the number of ways to arrange r objects that are chosen from a group of n objects. To calculate a , we 1st need to be able to find the of a number.
::找到 Pascal 三角形中的值或二进制扩展系数的另一种方法就是使用组合。组合常常被概率地用来寻找从一组 n 对象中选择的 r 对象的排列方法。要计算一个,我们首先需要找到一个数字。n Factorial
::阶乘n ! = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1Example 3
::例3Find the following factorials:
::查找下列因数:a. 4!
::a. 4个!b. 7!
::b. 7个!c. 10!
::c. 10个!Solution:
::解决方案 :a. 4 ! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24
::a. 4!=4321=24b. 7 ! = 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5 , 040
::b. 7=7=6=5=4=3=2=1=5,040c. 10 ! = 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 3 , 628 , 800
::c. 10=10-9-8-8-7-6-6-5-5-5-5-4-3-2-1=3-628 800Combinations
::合并If you choose r objects from a collection of n objects, there are r ! ways of arranging what you choose. In equation form, the number of combinations is
::如果您从 n 对象的集合中选择 r 对象,则有 r 方法来安排您选择的物体。在公式形式中,组合数是n C r = n ! ( n − r ) ! r ! .
::nCr=n!!!r!! we also noted a 组合 as (nr) 。
Example 4
::例4Find the following combinations:
::查找下列组合:a. 12 C 5
::a. 12C5b. 8 C 3
::b. 8C3Solution:
::解决方案 :a. 12 C 5 = 12 ! ( 12 − 5 ) ! 5 ! = 12 ! 7 ! 5 ! = 12 × 11 × 10 × 9 × 8 × 7 ! 7 ! × 5 × 4 × 3 × 2 × 1 = 792
::a. 12C5=12! (12- 5)! 5! =12! 7! 5! =12x11x10x10x9x8x7! 7! x5x5x4x3x2x1=792b. 8 C 3 = 8 ! ( 8 − 3 ) ! 3 ! = 8 ! 5 ! 3 ! = 8 ⋅ 7 ⋅ 6 ⋅ 5 ! 5 ! ⋅ 3 ⋅ 2 ⋅ 1 = 8 ⋅ 7 = 56
::b. 8C3=8! (8- 3)! 3! =8! 5! 3! =8_ 7_ 6_ 5! 5!How to Find Factorials and Combinations Using a TI-83/84
::如何利用TI-83/84来寻找因数和组合Factorials
::阶乘数1. Enter the number.
::1. 输入数字。2. Press MATH and scroll to the probability menu on the right, PRB .
::2. 按MATH键并滚动到右侧的概率菜单,PRB。3. Select option 4 and then press ENTER .
::3. 选择备选方案4,然后按ENTER键。Combinations
::合并1. Enter the value for n.
::1. 输入n.的值。2. Press MATH and scroll to the probability menu on the right, PRB .
::2. 按MATH键并滚动到右侧的概率菜单,PRB。3. Select option 3.
::3. 选择备选方案3。4. Enter the value for r and then press ENTER .
::4. 输入 r 的值,然后按 ENTER 键。If we let n = 5 , then we can find the co mbinations for r = 1 , 2 , 3 , 4 , 5 as follows:
::如果我们使用n=5,那么我们可以找到r=1,2,3,4,5,5的组合如下:( 5 0 ) = 5 ! 0 ! 5 ! = 1 ; ( 5 1 ) = 5 ! 1 ! 4 ! = 5 ; ( 5 2 ) = 5 ! 2 ! 3 ! = 10 ; ( 5 3 ) = 5 ! 3 ! 2 ! = 10 ; ( 5 4 ) = 5 ! 4 ! 1 ! = 5 ; ( 5 5 ) = 5 ! 5 ! 0 ! = 1
Notice these are the elements of the 5 t h row of Pascal's Triangle: 1 5 10 10 5 1.
::这些是帕斯卡尔三角形第五排的元素: 1 5 10 10 5 1。The elements in the n th row of Pascal's Triangle can be determined by finding the combinations, ( n r ) , where n is the row number and r is every integer between 0 ≤ r ≤ n .
::Pascal 三角形 n行中的元素可以通过找到组合来确定,nr, n是行号, r是 0n 之间的每个整数。by Art of Problem Solving shows the relationship between Pascal's Triangle and combinations.
::根据《解决问题的艺术》 来显示帕斯卡尔的三角形和组合之间的关系。Looking ahead, you will notice that the coefficients of ( a + b ) 2 = a 2 + 2 a b + b 2 are the 2nd row of Pascal's Triangle. We can determine these coefficients either using the rows of Pascal's Triangle or by finding combinations. We use both of these approaches in the next section to expand binomials.
::展望未来, 您将会注意到, (a+b) 2=a2+2a2+2ab+b2的系数是帕斯卡尔三角的第二排。 我们可以使用帕斯卡尔三角的行或找到组合来确定这些系数。 我们在下一节使用这两种方法来扩展二进制。Summary
::摘要-
Pascal's Triangle can be formed by having e
ach row begin and end with a 1. Each "interior" value in each row is the sum of the two numbers above it.
::帕斯卡尔的三角形可以通过每行开头和结尾都有一行来形成。 每行的每个“内值”是上方两个数字的总和。 -
We can also find these values by finding combinations.
If you choose
r
objects from a collection of
n
objects, there are
r
!
ways of arranging what you choose. In equation form, the number of combinations is
n
C
r
=
n
!
(
n
−
r
)
!
r
!
. We also denote a combination as
(
n
r
)
.
::我们也可以通过查找组合来找到这些值。 如果您从 n 对象的集合中选择 r 对象, 则有 r 方法来安排您选择的 。 在方程形式中, 组合数是 nCr=n!! (n-r)! r! 我们还将组合数表示为 (nr) 。
Review
::回顾1. Write out the elements in row 7 of Pascal's Triangle.
::1. 在帕斯卡尔三角区第7行中写明元素。2. Write out the elements in row 13 of Pascal's Triangle.
::2. 在帕斯卡尔三角区第13行写出元素。Find the following combinations:
::查找下列组合:3. 3 C 1
::3.3C1 3C14. 7 C 1
::4. 7C1 7C15. 6 C 2
::5. 6C2 6C26. 8 C 8
::6. 8C87. 9 C 3
::7. 9C38. 9 C 6
::8. 9C6号9. 7 C 3
::9. 7C3 7C310. 17 C 4
::10.10C4 17C411. 30 C 11
::11. 30C1112. 10 C 0
::12. 10C0 10C0Explore More
::探索更多1. In Pascal's Triangle, the 2nd diagonal is what set of numbers? 2
::1. 在帕斯卡尔三角地带,第二对角线是哪些数字组?2. Sum the numbers in each row of Pascal's Triangle. Write a formula for the sequence you find. 2
::2. 计算帕斯卡尔三角形每一行的数字。为您找到的序列写一个公式。3. The numbers in the 3rd diagonal of Pascal's Triangle are called triangular numbers. Find the 1st 10 triangular numbers. 2
::3. 帕斯卡尔三角形第三对角线的数字称为三角数字,请查找前十位三角数字。4. Mersenne numbers are numbers of the form 2 n − 1. Show that the sum of the 1st n rows of Pascal's Triangle is equal to the nth Mersenne number for n = 5 and n = 6 . 2
::4. Mersenne数字是表2n-1的编号。显示帕斯卡尔三角区第一 n 行的总和等于n=5和n=6.2的nth Mersenne数字。Answers for Review and Explore More Problems
::回顾和探讨更多问题的答复Please see the Appendix.
::请参看附录。PLIX
::PLIXTry this interactive that reinforces the concepts in this section:
::尝试此互动来强化本节的概念 :References
::参考参考资料1. "Pascal's Triangle," last edited May 16, 2017,
::1. 2017年5月16日编辑的《帕斯卡尔三角》2. "The 12 Days of Pascal's Triangular Christmas," by Michael Rose, uploaded December 19, 2013,
::2. 2013年12月19日, Michael Rose上传“帕斯卡尔三边圣诞节12天”, -
Pascal's Triangle can be formed by having e
ach row begin and end with a 1. Each "interior" value in each row is the sum of the two numbers above it.