Section outline

  • Introduction
    ::导言

    Much of algebraic representation occurs within the coordinate (or Cartesian) plane. This lesson will review how to  represent  points, lines, and parallel and perpendicular lines graphically.   
    ::许多代数表示式出现在坐标(或笛卡尔)平面内,该课程将用图形方式审查如何代表点、线条、平行线和垂直线。

     

    The Coordinate Plane
    ::协调计划

    The coordinate plane can be thought of as two number lines that meet at right angles. The horizontal line is called the x -axis  and the vertical line is called the y -axis. Together the lines are called the axes , and the point at which they cross is called the origin . The axes split the coordinate plane into four quadrants , which are numbered sequentially (I, II, III, IV) moving counterclockwise from the upper right.
    ::坐标平面可被视为在右角度相交的两条数字线。 水平线称为 X 轴, 垂直线称为 Y 轴。 横线加起来称为轴, 其交叉点则称为原点。 轴将坐标平面分割成四个四方位, 从右上方按顺序编号( 一、 二、 三、 四) , 从右上方逆时针移动 。

    Identify Coordinates of Points
    ::确定各点的坐标

    When given a point on a coordinate plane, you can easily determine its coordinates . The coordinates of a point are two numbers , and written together they are called an ordered pair . The numbers describe how far along the x -axis and y -axis the point is. The ordered pair is written in " data-term="Parentheses" role="term" tabindex="0"> parentheses , with the x -coordinate (also called the abscissa ) 1st and the y -coordinate ( also known as  the ordinate ) 2nd.
    ::当在坐标平面上给定一个点时,您可以很容易地确定其坐标。一个点的坐标是两个数字,它们一起写成,被称为一个有顺序的对。数字说明在x轴和y轴之间的距离。定的对以括号写,有x坐标(也称为 abscissa) 1 和 y坐标(也称为坐标) 2 。

    ( 1 , 7 ) An ordered pair with an   x -value of 1 and a   y -value of 7 ( 0 , 5 ) An ordered pair with an   x -value of 0 and a   y -value of 5 ( - 2.5 , 4 ) An ordered pair with an   x -value of -2.5   and a   y -value of 4 ( - 107.2 , - 0.005 ) An ordered pair with an   x -value of -107.2   and a   y -value of - 0.005
    :sad1,7) 定购对,X值为1,Y值为7(0,0,5) 定购对,X值为0,Y值为5(2.5,4) 定购对,X值为-2.5,Y值为4(107.2,-0.005) 定购对,x值为-107.2,Y值为-0.005)

    Identifying coordinates is just like reading points on a number line, except that the points do not actually lie on the number line!
    ::识别坐标与数字行的读点相同,但数字线上的点实际上并不在数字线上!

    Plot Points in a Coordinate Plane
    ::坐标平面中的绘图点

    Plotting points is simple, once you understand how to read coordinates and the scale on a graph. As a note on scale, in the next two examples pay close attention to the labels on the axes. 
    ::绘图点很简单, 一旦您了解如何在图表中读取坐标和比例尺。 作为比例说明, 在接下来的两个示例中, 密切关注轴上的标签 。

    Watch this video for help with the examples below: 
    ::观看这段影片,

     

     

      

    Slope
    ::斜斜度

    The following video provides an overview on the concept of the of a line. It defines slope, gives the formula , and works through examples:
    ::以下视频概述了一条线的概念。它界定斜坡,给出公式,并通过实例发挥作用:

     

    Slope is the change in vertical direction over the change in horizontal direction. It is defined as the  rise run
    ::斜坡是垂直方向相对于水平方向变化的变化。它被定义为上升。

       Slope of Line between Two Points
    ::两点间线的曲线

    The  slope of the line passing through two points ( x 1 ,   y 1 ) and ( x 2 ,   y 2 )  is m = ( y 2 y 1 ) ( x 2 x 1 ) .

    Different Types of Slope :
    ::不同的斜坡类型 :

     

    Watch this video for help with the examples below:
    ::观看这段影片,

     

    Parallel Lines in the Coordinate Plane
    ::坐标平面的平行线

    Parallel lines are two lines that never intersect. In the coordinate plane, that would look like this:
    ::平行线是两条从不交叉的线条。在坐标平面上,这看起来像:

     

    If we take a closer look at these two lines, we see that the slopes are both 2 3 .
    ::如果我们仔细看一看这两条线,我们可以看到,斜坡是23。

    This can be generalized to any pair of parallel lines. Parallel lines always have the same slope and different y intercepts .
    ::平行线总是有相同的斜坡和不同的y-inter概念。

    What if you were given two parallel lines in the coordinate plane? What could you say about their slopes?
    ::如果在座标飞机上给你两条平行线呢?

    Perpendicular Lines in the Coordinate Plane
    ::坐标平面上的直直线

    Perpendicular lines are two lines that intersect at a 90  or right angle. In the coordinate plane, that would look like this:
    ::垂直线是两条线,在90°C或右角交叉。在坐标平面上,这看起来像:

     

    If we take a closer look at these two lines, we see the slope of one is -4 and the other is 1 4 .
    ::如果我们仔细看一看这两条线,我们看到一的斜坡是 -4,另一的斜坡是14。

    This can be generalized to any pair of perpendicular lines in the coordinate plane. The slopes of perpendicular lines are negative reciprocals of each other.
    ::这可以推广到坐标平面上任何一条垂直线,垂直线的斜坡是相互负对等的。

    This video explores the relationship between the slopes of perpendicular lines: 
    ::这段影片探索垂直线斜坡之间的关系:

     

    Examples
    ::实例

    Example 1
    ::例1

     

    Find the coordinates of the point labeled P in the diagram above.
    ::在上面的图表中找到标有 P 点的坐标 。

    Solution:
    ::解决方案 :

    Imagine you are standing at the origin (the point where the x -axis meets the y -axis). In order to move to a position where P  is directly above you, you would move 3 units to the right. (We say this is in the positive x  direction.)
    ::想象一下您站在原点( X 轴与 Y 轴相交的点) 。 为了移动到 P 直接在你上方的位置, 您会移动到右边的 3 个单位 。 (我们说这是正 x 方向 。 )

    The x -coordinate of P is +3.
    ::P的x坐标为+3。

    Now, if you were standing at the 3 marker on the x -axis, point P would be 7 units above you. (Above the axis means it is in the positive y direction.)
    ::现在,如果你站在X轴上方的3个标记处,P点在你上面7个单位。 (轴是正向y方向。 )

    The y -coordinate of P is +7.
    ::P的 Y 坐标是+ 7 。

    The coordinates of point P are (3, 7).
    ::P点的坐标是(3,7)

    Example 2
    ::例2

     

    Find the coordinates of the points labeled Q and R in the diagram  above .
    ::在上述图表中查找标有Q和R的点的坐标。

    Solution:
    ::解决方案 :

    In order to get to Q , we move 3 units to the right, in the positive x  direction, then 2 units down, in the negative y  direction. The x -coordinate of Q is +3, and the y -coordinate of Q is −2.
    ::为了到达Q,我们将3个单位向右移动,向正x方向移动,然后向下移动2个单位,向负y方向移动。Q的x坐标是+3,而Q的Y坐标是-2。

    The coordinates of R are found in a similar way. The x -coordinate is +5 (meaning 5 units in the positive x  direction), and the y -coordinate is again −2.
    ::R 的坐标也以类似的方式找到。 x 坐标是+ 5 (表示正向 x 方向 5 个单位),Y 坐标是 -2 。

    The coordinates of Q are (3, −2). The coordinates of R are (5, −2).
    ::Q座标为(3,-2),R座标为(5,-2)。

    Example 3
    ::例3

    Triangle A B C is shown in the diagram below. Find the coordinates of the vertices A , B , and C .
    ::三角 ABC 显示在下图中。请查找 A、B 和 C 顶点的坐标 。

    Solution:
    ::解决方案 :

    Point A A   ( - 2 , 5 )
    ::A点:A(-2,5)

    x -coordinate = - 2
    ::x坐标坐标=-2

    y -coordinate = + 5
    ::y- 坐标% 5

    Point B B   ( 3 , - 3 )
    ::B点:B(3,3,3)

    x -coordinate = + 3
    ::x 坐标% 3

    y -coordinate = - 3
    ::Y 坐标=-3

    Point C C   ( - 4 , - 1 )
    ::C点:C(4-4-1)

    x -coordinate = - 4
    ::x坐标坐标=-4

    y -coordinate = - 1
    ::Y- 坐标=-1

     

    Example 4
    ::例4

    Plot the following points on the coordinate plane:
    ::在坐标平面上绘制下列点:

    A ( 2 , 7 ) B ( - 4 , 6 ) D ( - 3 , - 3 ) E ( 0 , 2 ) F ( 7 , - 5 )
    ::A(2,7)B(4,6)D(3,3)E(0,2)F(7,5)

    Solutions:
    ::解决办法:

     

    Point A ( 2 , 7 ) is 2 units right, 7 units up. It is in Quadrant I.
    ::A点( 2, 7) 是 2 个单位右侧, 向上 7 个单位。 在 Quadrant I 中 。

    Point B ( - 4 , 6 ) is 4 units left, 6 units up. It is in Quadrant II.
    ::B点( 4, 6) 是剩下4个单元, 向上 6个单元, 在 Quadrant II 中 。

    Point D ( - 3 , - 3 ) is 3 units left, 3 units down. It is in Quadrant III.
    ::D( 3 - 3) 点是左3个单位, 向下3个单位, 在 Quadrant III 中 。

    Point E ( 0 , 2 ) is 2 units up from the origin. It is right on the y -axis, between Quadrants I and II.
    ::点E( 0. 2) 是从源起向上移动的 2 个单位。 它位于 y 轴上, 介于 夸德兰特 II 和 II 之间 。

    Point F ( 7 , - 5 ) is 7 units right, 5 units down. It is in Quadrant IV.
    ::F(7,5)点是右7个单位,向下5个单位,在Quadrant IV。

    Example 5
    ::例5

    a) What is the slope of the line through (2, 2) and (4, 6)?
    :sada) 线的坡度是多少(2、2和4、6)?

    Solution:
    ::解决方案 :

    Use the slope formula to determine the slope. Use (2, 2) as ( x 1 ,   y 1 ) and (4, 6) as ( x 2 ,   y 2 ) .
    ::使用斜坡公式确定斜坡。 使用 2( 2, 2) 作为 (x1, y1) , 4, 6) 作为 (x2, y2) 。

    m = y 2 y 1 x 2 x 1 = 6 2 4 2 = 4 2 = 2

    ::my2-y1x2-x1=6-24-2=42=2

    Therefore , the slope of this line is 2. This slope is positive.
    ::因此,这条线的斜坡是2。 这个斜坡是正的。

    b) Find the slope between (-8, 3) and (2, -2).
    :sadb) 在(8,3)和(2,2)之间找到斜坡。

    Solution:
    ::解决方案 :

    m = 2 3 2 ( 8 ) = 5 10 = 1 2

    ::m2 - 32 - (-8) 510 - 12

    This is a negative slope .
    ::这是一个负斜坡。

    c) Find the slope between (-5, -1) and (3, -1).
    :sadc) 在(5-1)和(3-1)之间找到斜坡。

    Solution:
    ::解决方案 :

    m = 1 ( 1 ) 3 ( 5 ) = 0 8 = 0

    ::m1 - (- 1) 3 - (-5) = 08=0

    Therefore, the slope of this line is 0, which means it is a horizontal line. Horizontal lines always pass through the y axis. Notice that the y coordinate for both points is -1. In fact, the y coordinate for any point on this line is -1. This means the horizontal line must cross y = 1 .
    ::因此,这条线的斜坡是 0, 意思是它是一个水平线。 水平线总是通过 y - 轴线。 请注意, 两个点的 y - 坐标是 - 1 。 事实上, 该线上任何点的 y - 坐标是 - 1 。 这意味着水平线必须横过 y * 1 。

     d)  Find  the slope of the line through (3, 2) and (3, 6).
    :sadd) 找到横穿线的斜坡(3,2)和(3,6)。

    Solution:
    ::解决方案 :

    m = 6 2 3 3 = 4 0 = u n d e f i n e d

    ::m=6 - 23 - 3=40=未定义

    Therefore, the slope of this line is undefined , which means it is a vertical line. Vertical lines always pass through the x axis. Notice that the x coordinate for both points is 3. In fact, the x coordinate for any point on this line is 3. This means the vertical line must cross x = 3 .
    ::因此,这条线的斜坡是未定义的, 这意味着它是一条垂直线。 垂直线总是通过 x- 轴线。 注意两个点的 x- 坐标是 3 。 事实上, 这条线上任何点的 x- 坐标是 3 。 这意味着垂直线必须跨 x= 3 。

    Example 6
    ::例6

    a) Find the slope of the line that is  perpendicular to this line:  y = 2 3 x 5 .
    :sada) 找到与该线垂直的线的斜坡:y23x-5。

    Solution:
    ::解决方案 :

    m = 2 3 , take the reciprocal and change the sign, m = 3 2  (⊥ is the notation for perpendicular) .
    ::má23, 拿对等的, 并更改符号, m32 (是垂直的标记) 。

    b) Find the slope of the line that is perpendicular to this line:  y = x + 2 .
    :sadb) 查找与该线垂直的线的斜坡:y=x+2。

    Solution:
    ::解决方案 :

    Because there is no number in front of x , the slope is 1. The reciprocal of 1 is 1, so the only thing to do is make it negative,  m = 1 .
    ::因为x前面没有数字, 斜坡是 1 。 1 的对等值是 1, 所以唯一要做的就是让它负, m1 。

    Example 7
    ::例7

    Find the equation of the line that is perpendicular to y = 1 3 x + 4 and passes through (9, -5).
    ::查找与 y13x+4 垂直的直线的方程,然后通过 (9,5) 。

    Solution:
    ::解决方案 :

    First, the slope is the opposite reciprocal of 1 3 . So, m = 3 .
    ::首先,斜坡是-13的对等。所以,m=3。

    The equation of a line can be written using slope-intercept form y = m x + b
    ::线条的方程式可以用 y=mx+b 的斜体界面写出。

    Plug in 9 for x and -5 for y to solve for the new y intercept ( b )
    ::x 和 - 5 y 的插件在 9 中, 用于 y - interfict (b) 的 y - interview (b) 解答 :

    5 = 3 ( 9 ) + b 5 = 27 + b 32 = b

    ::- 5=3(9)+b-5=27+b-32=b

    Therefore, the equation of the perpendicular line is y = 3 x 32 .
    ::因此,垂直直线的方程式是y=3x-32。

    Note that you can use the same process, but keep the slope identical if solving for the equation of the line that is parallel.
    ::请注意,您可以使用相同的进程,但如果解决平行线的方程式,则保持斜度相同。

    Example 8
    ::例8

    Graph 3 x 4 y = 8 and 4 x + 3 y = 15 . Determine if they are perpendicular.
    ::图3 - 4y=8和4x+3y=15。确定它们是垂直的。

    Solution:
    ::解决方案 :

    First we have to change each equation into slope-intercept form. In other words, we need to solve each equation for y :
    ::首先,我们必须将每个方程式改变为斜坡界面形式。 换句话说, 我们需要为 y 解析每个方程式 :

    3 x 4 y = 8 4 x + 3 y = 15 4 y = 3 x + 8 3 y = 4 x + 15 y = 3 4 x 2 y = 4 3 x + 5

    ::3x-4y=84x+3y=15-4y3x+83y4x+15y=34x-2y43x+5

    Now that the lines are in slope-intercept form (also called y intercept form), we can tell they are perpendicular because their slopes are opposite reciprocals.
    ::现在线以斜坡界面的形式(也称为 y - interphysict form)出现, 我们可以看出来它们是垂直的, 因为它们的斜坡是相反的对等的 。

     

    Example 9
    ::例9

    Find the slope of the interval between the two given points:
    ::查找两个给定点间距的斜坡 :

    a) (3, -4) and (3, 7)
    :sada) (3,4)和(3,7)

    Solution:
    ::解决方案 :

    These two points create a vertical line, so the slope is undefined.
    ::这两个点形成一条垂直线,所以斜坡是未定义的。

    b) (6, 1) and (4, 2)
    :sadb) (6,1)和(4,2)

    Solution:
    ::解决方案 :

    The slope is ( 2 1 ) ( 4 6 ) = 1 2 .
    ::斜坡为(2-1)(4-6)12。

    c) (5, 7) and (11, 7)
    :sadc) (5,7)和(11,7)

    Solution:
    ::解决方案 :

    These two points create a horizontal line, so the slope is zero.
    ::这两个点形成水平线,所以斜坡为零。

     

    Review
    ::回顾

    1. Identify the coordinates of each point, A F , on the graph below.


      ::在下图中标明每个点的坐标A-F。
    2. Draw a line on the above graph connecting point B with the origin. Where does that line intersect the line connecting points C and D ?
      ::绘制上图中连接点B和来源的线条。 该线条在哪里交叉连接点C和D的线条?

    Identify which quadrant each point lies in:
    ::确定每个点的象限值 :

    1. (4, 2)
    2. (-3, 5.5)
    3. (4, -4)
    4. (-3, -5)

    Find the slope between the two given points:
    ::查找两个给定点之间的斜坡 :

    1. (-9, 5) and (-6, 2)
      :sad9,5)和(6,2)
    2. (-6, 0) and (-1, -10)
      :sad-6,0)和(-1,-10)
    3. (1, -2) and (3, 6)
      :sad1,2)和(3,6)
    4. (-4, 5) and (-4, -3)
      :sad-4、5和4)和(-4、3)
    5. (4, 1) and (7, 1)
      :sad第4、第1、第4、第1和第7、第1段)
    6. (13, 12) and (-23, 14)
      :sad13、12)和(23、14)
    7. (-4, 2) and (-16, 12)
      :sad4-4,2)和(16,12)

    Determine if each pair of lines are parallel, perpendicular, or neither. Then graph each pair on the same set of axes:
    ::确定每一条线是否平行, 垂直, 或两者都不是。 然后在同一组轴上绘制每对图 :

    1. y = 4 x 2 and y = 4 x + 5
      ::y=4x-2和y=4x+5 y=4x-2和y=4x+5
    2. y = x + 5 and y = x + 1
      ::yx+5和y=x+1 yx+5和y=x+1
    3. 5 x + 2 y = 4 and 5 x + 2 y = 8
      ::5x+2y4和5x+2y=8
    4. y = 2 x + 3 and y = 1 2 x + 3
      ::y2x+3和y=12x+3
    5. y = 3 x + 1 and y = 3 x 1
      ::y3x+1和y=3x-1

    Determine the equation of the line that is parallel to the given line, through the given point:
    ::通过给定点确定与给定线平行的线条的方程 :

    1. y = 5 x + 1 ;   ( 2 , 3 )
      ::y5x+1;(-2,3)
    2. y = 2 3 x 2 ;   ( 9 , 1 )
      ::y=23x-2; (9,1)
    3. x 4 y = 12 ;   ( 16 , 2 )
      ::x-4y=12; (- 16-2)

    Determine the equation of the line that is perpendicular to the given line, through the given point:
    ::通过给定点确定与给定线垂直的线条的方程:

    1. y = x 1 ;   ( 6 , 2 )
      ::y=x-1; (- 6, 2)
    2. y = 3 x + 4 ;   ( 9 , 7 )
      ::y=3x+4; (9,-7)
    3. 5 x 2 y = 6 ;   ( 5 , 5 )
      ::5x-2yy=6; (5,5)
    4. y = 4 ;   ( 1 , 3 )
      ::y=4; (-1) (-1)

    Review (Answers)
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。