Section outline

  • Introduction
    ::导言

    The revenue collected by an apartment manager is given by  R ( x ) = ( 580 + 20 x ) ( 50 x ) ,  where x  is the number of $20 rent increases: 
    ::公寓经理收取的收入由R(x)=(580+20x)(50-x)提供,其中x是增加的20美元租金:

    lesson content

    In another section we used this example to discuss . Now, notice the points  ( 0 , 29000 )  and  ( 50 , 0 )  on the graph. These points convey special information. The first represents the revenue from rent of $29,000 per month before increasing the rent. The second point says that after fifty $20 increases (or an increase of $1000), all tenants will move and the rent revenue will be $0 per month. These special points are called intercepts .
    ::我们在另一节中用这个例子来讨论。现在,请注意图表上的点数(0,29000美元)和(50,0美元),这些点表示特殊信息。第一个点表示在增加租金之前每月租金收入29,000美元。第二个点表示在增加50美元(或增加1,000美元)之后,所有租户都将搬家,租金收入为每月0美元。这些特殊点被称为拦截。

    Intercepts 
    ::拦截

    An intercept in mathematics is the point where  a function crosses the  x - or  y - axis. For example, identify the intercepts for the following graph:
    ::数学截取是函数通过 x 或 y 轴的点。例如,为下图标明截取次数:

    lesson content

    The  x -intercepts are  ( 2 , 0 )  and  ( 3 , 0 ) . The  y -intercept is approximately  ( 0 , 1.1 )
    ::x 拦截是 (-2,0) 和 (3,0) 。 y 拦截大约是 (0,-1.1)。

    Zeros and roots are synonyms for the x -values where a function crosses or touches the  x -axis. In order for a relation to pass the vertical line test and thus be a function, it must have only  one y -intercept. However, it may have multiple x -intercepts. 
    ::零和根是函数交叉或触摸 x 轴的 x 值的同义词。要通过垂直线测试从而成为函数,它必须只有一个 y 界面。 但是, 它可能有多个 x 界面 。

    x -intercept
    ::x 拦截

    The  x -intercept is the point where the function crosses or touches the  x -axis. The  x -values of these points are  also called roots and zeros of a function. They are found algebraically by setting y = 0 and solving for x .
    ::x 界面是函数交叉或接触 x 轴的点。这些点的X 值也称为函数的根和零。它们通过设置 y=0 和为 x 解析而找到代数。

    y -intercept
    ::y 界面

    The  y -intercept is the point where the function crosses or touches the  y -axis. This point is found by setting  x  to zero and solving for  y .
    ::y 界面是函数交叉或接触 y 轴的点。此点通过将 x 设置为零和为 y 解析找到。

    Play, Learn, Interact, and Explore Intercepts:
    ::玩耍、学习、互动和探索拦截:

    Examples
    ::实例

    Example 1
    ::例1

    What are the zeros and y -intercept for the parabola y = x 2 2 x 3
    ::参数 y=x2-2x-3 的零和 Y 界面是什么 ?

    Solution:
    ::解决方案 :

    Method 1: Solution using a graph:
    ::方法1:使用图表的解决方案:

    lesson content

    The zeros are at x = 1 , 3 . The y -intercept is at (0, -3).
    ::零位值为 x1,3。 Y 拦截值为 0, - 3 。

    Method 2: Solution using algebra:
    ::方法2:用代数解析:

    When y = 0 , substitute 0 for  y to find zeros.
    ::当 Y=0 时, 以 0 代替 y 找到零 。

    0 = x 2 2 x 3 = ( x 3 ) ( x + 1 )
    ::0=x2-2-2x-3=(x-3)(x+1)

    y = 0 , x = 3 , 1
    ::y=0,x=3,-1

    The zeros are -1 and 3 and can be found at the  x -intercepts (-1, 0) and (3, 0).
    ::零为-1和3,可在X-截取器(-1,0)和(3,0)中找到。

    When x = 0 , substitute 0 for  x to find the y -intercept.
    ::当 x=0 时, 以 0 代替 x 查找 Y 接口 。

    y = ( 0 ) 2 2 ( 0 ) 3 = 3
    ::y=(0)2-2-2(0)-33

    x = 0 , y = 3
    ::x=0,y3

    The y -intercept is at (0, -3).
    ::y 界面为 0, - 3 。

    Example 2
    ::例2

    Identify the zeros and y -intercepts for the sine function:
    ::识别正弦函数的零和 Y 界面 :

    lesson content

    Solution:
    ::解决方案 :

    The y -intercept is (0, 0). There are four zeros visible on this portion of the graph. The sine graph is periodic and repeats in both directions. In order to capture every x -intercept, a pattern for the zeros should be identified.
    ::y 界面是 (0, 0) 。 图形的这一部分有 4 个零 可见 。 正弦图是周期性的, 双向重复 。 为了捕捉每个 x 界面, 需要为零确定一个模式 。

    The visible zeros are 0 , π , 2 π ,  and 3 π . The pattern is that there is an x -intercept every multiple of π , including negative multiples. The matching zero values  can be described in this way:
    ::可见零是 0, , 2, 和 3。 模式是 X 拦截 的 倍数, 包括负倍数。 匹配的零值可以这样描述 :

    The zeros  are n π , where  n is an integer { 0 , ± 1 , ± 2 , } .
    ::零是 n, n是整数 {0, 1, 2,...} 。

    Example 3
    ::例3

    Identify the intercepts and zeros of the function  f ( x ) = 1 100 ( x 3 ) 3 ( x + 2 ) 2 .
    ::识别函数 f( x) = 1100( x-3) 33( x+2) 的拦截数和零 。

    Solution:
    ::解决方案 :

    To find the value of  y  for the  y -intercept, substitute 0 for x :
    ::要找到 Y 的 Y 值, 以 x 0 代替 x :

    y = 1 100 ( 0 3 ) 3 ( 0 + 2 ) 2 = 1 100 ( 27 ) ( 4 ) = 108 100 = 1.08
    ::y=1100(0-3)3(0+2)2=1100(-27)(4)1081001.08

    To find the x -intercepts, substitute 0 for y :
    ::要找到 X 界面, 替换 0 替换 y :

    0 = 1 100 ( x 3 ) 3 ( x + 2 ) 2
    ::0=1100(x-3-3)3(x+2)2

    By the zero product property , which states that if the product of a set of factors equals zero then one or more of the factors must equal zero,  x 3 = 0  or  x + 2 = 0
    ::根据零产品属性,该属性规定,如果一组因数的产值等于零,则一个或多个因数必须等于零,x-3=0或x+2=0。

    x = 3 , 2
    ::x=3,-2,x=3,-2

    Thus, the y -intercept is (0, -1.08), and the zeros are 3 and -2, which can be found at the  x -intercepts: (3, 0) and (-2, 0). 
    ::因此, Y 界面是 (0, -1.08) , 零是 3 和 -2, 可在 x 界面中找到 : (3, 0) 和 (2, 0) 。

    Example 4
    ::例4

    Determine the  x -intercepts and y -intercept of the following function, using algebra: f ( x ) = ( x + 3 ) 2 ( x 2 ) .
    ::使用代数( f( x) = (x+3) 2(x-2) 确定下列函数的 x 界面和 Y 界面: f( x) = (x+3) 2(x-2) 。

    Solution:
    ::解决方案 :

    To find the  y -intercept, substitute 0 for  x :
    ::要找到 Y 接口, x 的替代值 0 :

    y = ( 0 + 3 ) 2 ( 0 2 ) = 3 2 ( 2 ) = 9 ( 2 ) = 18  

    ::y= (0+3) 2(0-2) = 32(-2) = 9(-2) 18

    The y -intercept is (0, -18).
    ::Y 拦截是 (0, -18) 。

    To find the  x -intercepts, substitute 0 for  y :
    ::要找到 X 界面, 替换 0 替换 y :

    0 = ( x + 3 ) 2 ( x 2 )  

    ::0=(xx+3)2(x-2)

    By the zero product property,  x + 3 = 0  or  x 2 = 0  
    ::按零产品属性, x+3=0 或 x-2=0 。

    x = 3 , 2  

    ::x3,2

    The  x -intercepts are (-3, 0) and (2, 0). 
    ::x 界面是 (3, 0) 和 (2, 0) 。

    Example 5
    ::例5

    Determine the roots and y -intercept of the following function, using algebra or a graph:
    ::使用代数或图表确定以下函数的根和 Y interview:

    f ( x ) = x 4 + 3 x 3 7 x 2 15 x + 18
    :sadx) =x4+3x3- 7x2- 15x+18

    Solution:
    ::解决方案 :

    To find the  y -intercept, substitute 0 for  x :
    ::要找到 Y 接口, x 的替代值 0 :

    y = 0 4 + 3 0 3 7 0 2 15 0 + 18 = 18
    ::y=04+303-702-15°0+18=18

    The  y -intercept is (0, 18). 
    ::Y 界面是 (0, 18) 。

    By graphing f ( x ) = x 4 + 3 x 3 7 x 2 15 x + 18 , the  x -intercepts are (2, 0), (1, 0) and (-3, 0), so the roots are 2, 1, and -3. 
    ::通过图形 f(x) =x4+3x3- 7x2- 15x+18, x- 截取为(2, 0) (1, 0) 和 (3, 3, 0) , 所以根是 2, 1 和 - 3 。

    Example 6
    ::例6

    Determine the intercepts of the following function graphically: 
    ::以图形方式确定以下函数的拦截量:

    lesson content

    Solution:,
    ::解决方案:

    The y -intercept is approximately (0, -1). The x -intercepts are approximately (-2.3, 0), (-0.6, 0) and (0.8, 0). When finding values graphically, answers are always approximate. Exact answers need to be found analytically. 
    ::y 界面大约为 0, - 1 。 x 界面大约为 (- 2.3, 0, 0, 0) 和 (-0.6, 0) 和 (0. 8, 0) 。 以图形方式查找数值时, 答案总是大致的。 精确答案需要用分析方式找到 。

    Summary
    ::摘要

    • Zeros   and roots  are synonyms  for the  x -values where a function crosses the  x -axis.    
      ::零和根是函数交叉 x 轴的 x 值的同义词。
    • An   x -intercept  i s the point where the graph of a function crosses or touches the  x -axis. 
      ::x 界面是函数图形交叉或触碰 x 轴的点 。
    • A y -intercept is the point where the graph of a function crosses or touches the  y -axis. 
      ::y 界面是函数图形交叉或触碰 y 轴的点。
    • Note that in order for a function to pass the vertical line test and thus be a function, it should only have one y -intercept. However, it may have multiple   x -intercepts.  
      ::请注意,为了让函数通过垂直线测试并因此成为函数,它只应有一个 Y 接口。但是,它可能有多个 x 接口。

    Review
    ::回顾

    1. Determine the zeros and y -intercept of the following function algebraically:
    ::1. 确定下列函数代数的0和Y中间值:

         f ( x ) = ( x + 1 ) 3 ( x 4 )
    :sadxx) = (x+1) 3(x- 4)

    2. Determine the roots and y -intercept of the following function using algebra or a graph:
    ::2. 使用代数或图表确定下列函数的根和 Y 界面:

        g ( x ) = x 4 2 x 3 7 x 2 + 20 x 12
    ::g(x) =x4- 2x3- 7x2+20x- 12

    3. Determine the intercepts of the following function graphically:
    ::3. 以图形方式确定以下函数的拦截量:

    lesson content

    Find the intercepts for each of the following functions:
    ::查找以下每个函数的拦截功能:

    4. y = x 2
    ::4. y=x2

    5. y = x 3
    ::5. y=x3

    6. y = log x
    ::6.y=logx

    7. y = 1 x
    ::7.y=1x

    8. y = 2 x
    ::8. y=2x

    9. y = x
    ::9.y=x 9y=x

    10. Are there any functions without a y -intercept? Explain.
    ::10. 是否有任何功能没有y-intermissions?解释。

    11. Are there any functions without an x -intercept? Explain.
    ::11. 是否有任何功能没有 X 拦截?解释。

    12. Explain why it makes sense that an x -intercept of a function is also called a “zero” of the function.
    ::12. 解释为什么一个函数的X拦截也称为函数的 " 零 " 是有道理的。

    Determine the intercepts of the following functions using algebra or a graph:
    ::使用代数或图表确定以下函数的截取次数:

    13. h ( x ) = x 3 6 x 2 + 3 x + 10
    ::13. h(x) =x3 - 6x2+3x+10

    14. j ( x ) = x 2 6 x 7
    ::14. j(x)=x2-6x-7

    15. k ( x ) = 4 x 4 20 x 3 3 x 2 + 14 x + 5
    ::15. kk(x)=4x4-20x3-3-3x2+14x+5

    Review (Answers )
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。