Section outline

  • lesson content

     

    Trigonometric functions can be disguised in many ways. Their ability to repeat a pattern infinitely allows their forms to be represented with different functions. The art and science of showing that two trigonometric functions are either the same or not uses "trigonometric identities." To be able to answer any question that can be modeled by trigonometric functions, we must solve equations. For example, in another chapter we discussed  y = 28 sin ( 0.48 x 1.81 ) + 56 , which is a function that predicts the average monthly temperature for Chicago. For this model, x is the month number. A meteorologist would use this model to find the times of the year when the average monthly temperature is 48 degrees. To do that, the meteorologist could  use identities. In this chapter, we will explore the algebraic manipulations of trigonometric functions and the trigonometric identities. These will serve as a toolbox that, together with algebra, will help simplify and solve trigonometric equations.
    ::三角函数可以以多种方式变形 。 它们重复一个模式的能力无限允许其形式以不同功能表示 。 显示两个三角函数是否相同 的艺术和科学 。 显示两个三角函数是否使用“ 矩形特征 ” 的艺术和科学 。 要能够回答任何可以通过三角函数模拟的问题, 我们必须解答方程式 。 例如, 在另一个章节中, 我们讨论的 y=28sin( 0. 48x- 1. 81)+56 功能, 是一个预测芝加哥平均月温度的函数 。 对于这个模型, x 是月数 。 气象学家会使用这个模型来寻找当年平均月温度为48度时的时间 。 要做到这一点, 气象学家可以使用身份 。 在本章中, 我们将探索三角测量函数的代数操作和三角特征 。 这些功能将作为一个工具箱, 与代数箱一起帮助简化和解算三角方程式 。