Section outline

  • Introduction
    ::导言

    Hyperbolas can be oriented so they open side to side or up and down. How can we determine the direction of the opening of a hyperbola  by the equation?  Hyperbolas are relations that have asymptotes. When graphing rational functions, you often produce a hyperbola. In this concept, hyperbolas will not be oriented in the same way as with rational functions, but the basic shape of a hyperbola will still be there. 
    ::Hyperbolas可以调整方向,让它们向上向上或向下开开来。我们如何用方程式来决定打开双倍波拉的方向? Hopbolas 是具有无等同元素的关系。在绘制理性函数图时,你常常产生双倍波拉。在这个概念中,双倍波拉不会以与理性函数相同的方式向上,但双倍波拉的基本形状仍然存在。

    The Hyperbola
    ::双波

    Recall that a hyperbola is generated when a plane intersects both nappes of the cone. As a result, a hyperbola has two foci . For every point on the hyperbola, the difference of the distances to each foci is constant. 
    ::提醒注意当一平面交叉锥锥体的两个腺时会产生双波拉。 因此, 双波拉有两个角。 对于双波拉的每一点, 与每个角的距离是恒定的 。

        Standard Equation  of a Hyperbola 
    ::超重波体的标准方程式

    The graphing form of a hyperbola that opens side to side is
    ::向侧打开的双倍波拉的图形形式是

    ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 ,

    :sadx-h)2a2-(y-k)2b2=1,

    where   ( h , k )  is the center of the hyperbola,  a  is the semi-major axis , and  b  is the semi-minor axis .  
    ::其中 (h, k) 是超波拉的中心, a 是半主轴, b 是半最小轴 。

    A hyperbola that opens up and down is
    ::上上下上下打开的双波波拉

    ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 ,
      where   ( h , k )  is the center of the hyperbola,   a   is the semi-major axis, and   b  i s the semi-minor axis .
    :sady)(k)2a2-(x-h)2b2=1,其中(h,k)是超波拉的中心,a是半主轴,b是半最小轴。

    Notice that for hyperbolas,  a goes with the positive term and  b goes with the negative term. It does not matter which constant is larger.
    ::请注意,对于超光子, 使用正值术语和 b 使用负值术语。 哪个恒定值更大并不重要 。

    lesson content


    When graphing, the constants  a and  b enable you to draw a rectangle around the center. The transverse axis travels from vertex to vertex and has length 2 a . The conjugate axis travels perpendicular to the transverse axis through the center and has length 2 b . The foci lie beyond the vertices so the eccentricity, which is measured as e = c a , is larger than 1 for all hyperbolas. Hyperbolas also have two directrix lines that are  a 2 c away from the center (not shown on the image).
    ::当图形绘制时,常数 a 和 b 使您能够在中心周围绘制矩形。 横轴从顶部向顶部移动, 长度为 2a 。 共振轴通过中心垂直到横轴, 长度为 2b 。 顶部位于顶部之外, 因此以 e=ca 测量的偏心度大于 1 , 对所有双波las 来说, 超双波las 的偏心度大于 1 。 Hyperbolas 也有两条直径直线, 离中心有 A2c 距离( 未显示在图像上 ) 。

    The focal radius is given by c  where   a 2 + b 2 = c 2 .
    ::焦半径由 a2+b2=c2 的 c 给出。

    The following video defines  a hyperbola and explains how to graph a hyperbola given in standard form: 
    ::以下视频定义了超重波拉,并解释了如何用标准格式绘制超重波拉图:

     


    The following video 
    explains how to graph a hyperbola in general form: 
    ::以下影片解释如何用一般形式绘制双倍波拉图:

     

    Play, Learn, and Explore Hyperbolas: 
    ::玩耍、学习和探索超双人游戏:

    Examples
    ::实例

    Example 1
    ::例1

    Put the following hyperbola into graphing form and sketch it: 
    ::将以下双倍波拉放入图形形状和草图:

    9 x 2 4 y 2 + 36 x 8 y 4 = 0.

    ::9x2-4y2+36x-8y-4=0。

    Solution:
    ::解决方案 :

    9 ( x 2 + 4 x ) 4 ( y 2 + 2 y ) = 4 9 ( x 2 + 4 x + 4 ) 4 ( y 2 + 2 y + 1 ) = 4 + 36 4 9 ( x + 2 ) 2 4 ( y + 1 ) 2 = 36 ( x + 2 ) 2 4 ( y + 1 ) 2 9 = 1

    ::9(x2+4x)-4(y2+2y)=49(x2+4x+4)-4(y2+2y+1)=4+36-49(x+2)-2-4(y+1)-2-4(y+1)=36(x+2)=36(x+2)24-(y+1)29=1

    lesson content

     

    Example 2
    ::例2

    Find the equation of the hyperbola with foci at (-3, 5) and (9, 5) and asymptotes with slopes of  ± 4 3
    ::查找超重波拉方位( 3, 5) 和( 9, 5) 的方位方位, 以及斜度为 +43 的单位方位方位 。

    Solution:
    ::解决方案 :

    The center is between the foci at (3, 5). The focal radius is c = 6 . The slope of the asymptotes is always the rise over run inside the box. In this case, since the hyperbola is horizontal and  a is in the  x direction, the slope is b a . This makes a system of equations.
    ::中心位于( 3, 5 ) 的角之间, 焦半径为 c=6 。 小微粒的斜度总是在框内运行的上升。 在这种情况下, 由于双倍波拉是水平的, a 是向 x 方向的, 斜度是 ba 。 这就形成了一个方程系统 。

    b a = ± 4 3 a 2 + b 2 = 6 2

    ::巴瓦43a2+b2=62

    When you solve, you get a = 3.6   and   b = 4.8
    ::解决后,将获得a=3.6和b=4.8。

    ( x 3 ) 2 324 25 ( y 5 ) 2 576 25 = 1

    :sadx-3)232425-(y-5)257625=1

    Example 3
    ::例3

    Find the equation of the conic that has a focus point at (1, 2), a directrix at  x = 5 , and an eccentricity equal to 3 2 . Use the property that the distance from a point on the hyperbola to the focus is equal to the eccentricity times the distance from that same point to the directrix:

    P F ¯ = e P D ¯ .
    Solution:
    ::找到在(1, 2) 有焦点点的二次曲线的方程式、 x=5 的直线和等于 32. 的偏心度。 使用以下属性: 从超博拉点到焦点点的距离等于从同一点到直线点的偏心度乘数: PF = ePD 。 解决方案 :

    This relationship bridges the gap between , which have eccentricity less than 1, and hyperbolas, which have eccentricity greater than 1. When eccentricity is equal to 1, the shape is a parabola .
    ::这种关系弥合了偏心度小于1的偏心度与偏心度大于1的超陈代谢值之间的差距。 当偏心度等于1时,形状即为抛物线。

    ( x 1 ) 2 + ( y 2 ) 2 = 3 2 ( x 5 ) 2

    :sadx-1)2+(y-2)2=32(x-5)2

    Square both sides and rearrange terms so that it becomes a hyperbola in graphing form. 
    ::方形两侧和重新排列的词义,以图示形式使它变成双波形。

    x 2 2 x + 1 + ( y 2 ) 2 = 9 4 ( x 2 10 x + 25 ) x 2 2 x + 1 9 4 x 2 + 90 4 x 225 4 + ( y 2 ) 2 = 0 4 x 2 8 x + 4 9 x 2 + 90 x 225 + 4 ( y 2 ) 2 = 0 5 x 2 + 82 x 221 + 4 ( y 2 ) 2 = 0 5 ( x 2 + 82 5 x + 1681 25 ) + 4 ( y 2 ) 2 = 221 1681 5 5 ( x + 41 5 ) 2 + 4 ( y 2 ) 2 = 576 5 25 ( x + 41 5 ) 2 576 5 ( y 2 ) 2 144 = 1

    ::x2 - 2x+1+1+(y-2-2)2=94(x2-10x+25)2=94(x2-10x+25)2x2x-2-2-2x-2-2x-2-942-942-904x-2254+(y-2)2=042x-8x+8x+4-9x2-9x2-90x2+90x2-9x2-9x2+9x2-90x2-90x2+9x2-2-90x2x2=0-5x2+822x-2211+4(y2-2)2=0-5(x2+825xx-1825x+168252525)+4-155(x+415)2-57652525(x+4-156-5(y-244=1)

     

    Example 4
    ::例4

    Recall the problem from the Introduction: How can we determine the direction of the opening of a hyperbola  by the equation?
    ::回顾导言中的问题:我们如何用方程式确定超重波拉打开的方向?

    Solution:
    ::解决方案 :

    Consider the hyperbola x 2 y 2 = 1 . This hyperbola opens side to side because  x can never be equal to zero. This example  demonstrates  that when the coefficient of the  y value is negative, the hyperbola opens up side to side.
    ::考虑超bola x2- y2= 1 。 此超bola 打开侧面, 因为 x 永远不能等于 0。 此示例显示, 当 y 值的系数为负时, 超bola 打开侧面 。

    Example 5
    ::例5

    Identify the shape, center, foci, vertices, equations of asymptotes, and equations of directrices of the following conic:
    ::识别以下二次曲线的形状、中位、角、角、脊椎、小微粒方程式和直线方程式:

    9 x 2 16 y 2 18 x + 96 y + 9 = 0.

    ::9x2 - 16y2 - 18x+96y+9=0。

    Solution:
    ::解决方案 :

    9 x 2 16 y 2 18 x + 96 y + 9 = 0

    ::9x2-16y2-18x+96y+9=0

    9 ( x 2 2 x ) 16 ( y 2 6 y ) = 9 9 ( x 2 2 x + 1 ) 16 ( y 2 6 y + 9 ) = 9 + 9 144 9 ( x 1 ) 2 16 ( y 3 ) 2 = 144 ( x 1 ) 2 16 + ( y 3 ) 2 9 = 1

    ::9(x2-2x)-16(y2-6y) 99(x2-2x+1)-16(y2-6y+9) 9+9-1449(x-1) 2-16(y-3) 2-144-(x-1) 216+(y-3)29=1

    Shape: Hyperbola that opens vertically 
    ::形状:垂直打开的超博拉

    Center: (1, 3)
    ::中心sad1,3)

    a = 3
    ::a=3 =3

    b = 4
    ::b=4 =4

    c = 5
    ::c=5 个

    e = c a = 5 3
    ::e=ca=53

    d = a 2 c = 9 5
    ::d=a2c=95 =95

    Foci: (1, 8), (1, -2)
    ::实任sad1,8),(1,2)

    Vertices: (1, 6), (1, 0)
    ::顶点sad1,6),(1,0)

    Equations of asymptotes: ( x 1 ) = ± 3 4 ( y 3 )
    ::微粒量的等同度sadx-1) 34(y-3)

    Note that it is easiest to write the equations of the asymptotes in point-slope form using the center and the slope.
    ::请注意,使用中间和斜坡以点窗体形式以点窗体写出小数方程是最容易的。

    Equations of directrices:  y = 3 ± 9 5
    ::电流平方:y=395

    Example 6
    ::例6

    Given the graph below, estimate the equation of the conic.
    ::根据下图,估计二次曲线的方程。

    lesson content

    Solution:
    ::解决方案 :

    Since exact points are not marked, you will need to estimate the slope of asymptotes to get an approximation for  a and b . The slope seems to be about ± 2 3 . The center seems to be at (-1, -2).  The transverse axis is 6, which means a = 3 .
    ::由于未标出精确点, 您需要估计小行星的斜度, 才能得出 a 和 b 的近似值。 斜度似乎是 + 23 。 中心似乎在 (-1 - 2) , 横轴是 6 , 这意味着 a= 3 。

    ( x + 1 ) 2 9 ( y + 2 ) 2 4 = 1
    :sadx+1)29-(y+2)24=1

    Example 7
    ::例7

    Find the equation of the hyperbola that has foci at (13, 5) and (-17, 5), with asymptote slopes of  ± 3 4 .
    ::查找具有福子值(13,5)和(17,5)的超重波拉的方程,以微量斜度为 +34。

    Solution:
    ::解决方案 :

    The center of the conic must be at (-2, 5). The focal radius is c = 15 . The slopes of the asymptotes are ± 3 4 = b a .
    ::二次曲线的中心必须位于 (-2, 5) 。 焦半径为 c=15。 小行星的斜度为 34 =ba 。

    a 2 + b 2 = c 2
    ::a2+b2=c2 = c2 =

    Since 3, 4, 5 is a well-known Pythagorean triple, it should be clear to you that  a = 12 , b = 9.
    ::3,4,4,5是众所周知的毕达哥林三联赛, 你应该清楚,a=12,b=9。

    ( x + 2 ) 2 12 2 ( y 5 ) 2 9 2 = 1  .
    :sadx+2)2122-2(y-5)292=1。

     

    Summary
    ::摘要

    • A hyperbola is the collection of points that share a constant difference between the distances between two focus points.
      ::双倍波拉是收集在两个焦点点之间的距离之间始终存在差异的点数。
    • Eccentricity is the ratio between the length of the focal radius and the length of the semi-transverse axis. For hyperbolas, the eccentricity is greater than 1. 
      ::偏心度是焦半径长度与半反向轴长度之比。对于超光子,偏心度大于1。
    • The graphing form of a hyperbola that opens side to side is
      ::向侧打开的双倍波拉的图形形式是

      ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 .
      :sadx-h)2a2-(y-k)2b2=1。


      ::向侧打开的双倍波拉的图形形式是 (x-h) 2a2 - (y-k) 2b2=1 。
    • The graphing form of a hyperbola that opens up and down is
      ::向上和向下打开的超双波拉的图示形式是

      ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 .
      :sady-k)2a2-(x-h)2b2=1。


      ::向上和向下打开的双倍波拉的图形形式是 (y-k) 2a2 - (x-h) 2b2=1。

    Review
    ::回顾

    Use the following equation for 1-5:  x 2 + 2 x 4 y 2 24 y 51 = 0.
    ::1-5使用以下方程式: x2+2x-4y2-24y-51=0。

    1. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
    ::1. 将双波拉放入图形形式,解释你如何知道它是双波拉。

    2. Identify whether the hyperbola opens side to side or up and down.
    ::2. 确定超重波拉是向侧还是向上或向下打开。

    3. Find the location of the vertices.
    ::3. 找到顶点的位置。

    4. Find the equations of the asymptotes.
    ::4. 寻找小行星的方程。

    5. Sketch the hyperbola.
    ::5. 伸展双倍波拉。


    Use the following equation for 6-10: 9 x 2 36 x + 16 y 2 32 y 164 = 0.
    ::6-10时使用以下方程式:-9x2-36x+16y2-32y-164=0。

    6. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
    ::6. 将双波拉放入图形形式,解释你如何知道它是双波拉。

    7. Identify whether the hyperbola opens side to side or up and down.
    ::7. 确定超重波拉是向侧还是向上或向下打开。

    8. Find the location of the vertices.
    ::8. 寻找顶峰的位置。

    9. Find the equations of the asymptotes.
    ::9. 寻找小行星的方程。

    10. Sketch the hyperbola.
    ::10. 涂抹双倍波拉。


    Use the following equation for 11-15:  x 2 6 x 9 y 2 54 y 81 = 0.
    ::11-15 使用以下方程式: x2-6x-9y2-54y-81=0。

    11. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
    ::11. 将双波拉放入图形形式,解释你如何知道它是双波拉。

    12. Identify whether the hyperbola opens side to side or up and down.
    ::12. 确定超重波拉是向上向上向下打开侧侧还是向上向上向下打开。

    13. Find the location of the vertices.
    ::13. 寻找顶峰的位置。

    14. Find the equations of the asymptotes.
    ::14. 寻找小行星的方程。

    15. Sketch the hyperbola.
    ::15. 涂抹双倍波拉。

    Review (Answers)
    ::回顾(答复)

    Please see the Appendix. 
    ::请参看附录。