Section outline

  • Sound waves can be represented by sine and cosine curves. In this project, you will develop a formula for the slope of the tangent line to the cosine curve at an arbitrary point  ( x , y ) . The 1st approach will be graphical, the 2nd will be numerical, and the 3rd will be analytical. 
    ::音波可以由正弦和余弦曲线代表。 在此工程中, 您会为任意点( x, y) 的正弦线向余弦曲线的斜度开发一个公式。 第一种方法是图形, 第二是数字, 第三是分析。

    1. Graphical Approach:  Use the graph shown above, or graph using Desmos or a graphing calculator, to estimate the slope of this curve at 15 different  x -values. For instance, the slope at  x = 3 π 2  is  1. Once you have determined 15 slope values, plot the points and connect them with a continuous curve. Do you recognize this curve? 
      ::图形化方式 : 使用上面显示的图表, 或使用 Desmos 或图形化计算器来估计此曲线的斜度, 以 15 种不同的 x 值。 例如, x= 3 = 2 的斜度是 1 。 一旦您确定了 15 个斜度值, 请绘制点数, 并将其与连续曲线连接 。 您是否识别此曲线 ?
    2. Numerical Approach:  The slope of the tangent line is given by the following formula:  m = lim Δ x 0 f ( x + Δ x ) f ( x ) Δ x .
      This formula is a good approximation of the slope when the change in   x Δ x ,  is small. Complete the table below when  Δ x = 0.001 ,  such that  m cos ( x + 0.001 ) cos x 0.001 .
       
          x   -2 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
          m                    
          
      ::数字方法: 相切线的斜度由以下公式给出: m=limxxxxxxxxxxxxxxxxxxxx。 当 xxx 变化小时, 此公式是斜度的良好近似值。 当 xx=0.001 时, 请填写下表, 例如 mçcos( x+0.0001)-cosx0.001 x-2- 1.5- 1.0-0.5 0.5 0.5 1.01.5 0.5 0.5 1. 0.5 0. 0.5 0. 0.5 0. 0.5 0.5 0. 0.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
    3. Analytical Approach:  To calculate the slope of the tangent line to the cosine curve analytically, you will need two trigonometric limits:  lim x 0 sin x x = 1 and lim x 0 cos x 1 x = 0.
       
      ::分析方法:为了分析计算正切线向余弦曲线的斜度,你将需要两个三角限值: limx0sinxxx=1和limx0cosx-1x=0。

    Use these limits to find a formula for the slope of the cosine curve. 
    ::使用这些限制来为余弦曲线的斜坡寻找公式。