The graph of a quadratic is called a
parabola.
::二次曲线的图叫做抛物线。
A parabola opens up if the leading coefficient is positive.
::如果主要系数为正数,则开启抛物线。
If the coefficient of
is positive, the parabola opens right.
::如果y的系数是正数,则抛物线打开正确。
The vertex is the extreme (lowest or highest) point of a parabola that opens up or down.
::顶点是向上或向下打开的抛物线的极端(最低或最高)点。
The line of symmetry divides a parabola in two symmetrical parts.
::对称线将抛物线分为两个对称部分。
The graph is a parabola with the vertex at (0, 3).
::该图是一个抛物线,顶点为(0, 3) 。
The parabola opens down, with the vertex at (2, 0).
::抛物线向下打开,顶部为(2,0)。
The parabola opens up, is narrower than the reference, and has a vertex at (-2, -8).
::抛物线打开,比引用范围小,在( 2 - 8) 有顶点( 2 - 8) 。
a. The parabola opens down.
b. The vertex is at (-1, 2)
c. It is not stretched, but reflected across the
-axis and shifted left 1 and up 2.
::a. 抛物线向下打开。b. 顶部为(-1, 2), c. 不伸展,但反射到X轴,左转1, 上移2。
is the narrowest because it is stretched vertically the most.
::y=6x2 是最窄的,因为它垂直伸展最多。
::y=-x2 y=-x2
::y=3x2+6x+1
::y=12x2+2x+4
::y=(x-3)2+4
::y=-x2-8x-17
Maximum height is 11.25 yds.
::最大高度为11.25 yds。
At max height, the ball is 15 yds down the field.
::在最高高度,球在球场下方15岁
You could determine the height and distance by approximating the vertex (the highest point), knowing that the line of symmetry is halfway between 0 and 30. Thus, the vertex is about (15, 11).
::了解对称线介于0至30之间,可以通过接近顶点(最高点)确定顶点的高度和距离,从而确定顶点大约为15、11。
Section 3.3: Polynomial Functions
::第3.3节:多功能
The real roots are -3, 2, and 3.
::真正的根是3,3,2,3
The real roots are -5, -2, and 2.
::真正的根源是5 -2和2
The real root is -1.
::真正的根是 -1
The real root is 4.
::真正的根是4
The real root is 1.
::真正的根是1
One factor is
.
::一个因素是 (x-3) 。
One factor is
.
::一个因素是 (x+1) 。
Factors are
,
, and
.
::因素是(x-4)、(x+4)和(x+2)。
There are no integer roots.
::没有整数根 。
Factors are
,
, and
.
::因素是(x+7)、(2x+3)和(x-1)。
Zeros: 1 and approximately -2.343, -0.471, and 1.814
End behavior: As
approaches ±∞,
approaches +∞.
Sample test
points: (-1, -4),
(0, 2),
and (1.47, -1.195)
::零: 1 和 约 -2.343,-0.471 和 1. 814 最终行为: 作为 x 接近 , y 接近 。 抽样测试点 1 - 4, (0, 2) 和 (1.47, - 1. 195)
Zeros: -3 and 1
End behavior: As
approaches ±∞,
approaches +∞.
Sample test
points:
(-4, 65),
(0, -3), and (2, 35)
::零: - 3 和 1 结束行为: 当 x 接近 , y 接近 。 抽样测试点 4, 65) , (0, 3) 和 (2, 35)
Zeros: -2 and approximately 2.672
End behavior: As
approaches ±∞,
approaches -∞.
Sample test
points: (-3, -63), (0, 6), and (3, -15)
::零: - 2 和 大约 2. 672 最终行为: 当 x 接近 , y 接近 - 。 抽样测试点 3 ) - 63, (0 , 6) 和 (3 , 15)
Zeros: -3, -2, -1, and 1
End behavior: As
approaches ±∞,
approaches -∞.
Sample test
points: (-2.607, 1.383), (1.469, -0.941), and (0, 6)
::零: -3, -2, -1 和 1 结束行为: 当 x 接近 , y 接近 - 。 抽样测试点 2. 607, 1. 383), (1.469, - 0.941) 和 ( 0, 6)
Zeros: There are no real zeros.
End behavior: As
approaches ±∞,
approaches -∞.
Sample test points: (-1, -3), (0, -4), and (1, -19)
::零: 没有真正的零。 结束行为 : x 接近 , y 接近 - 。 抽样测试点 1 ) - 3 , (0 , - 4) 和 (1, -19)
Section 3.4: Synthetic Division of Polynomials
::第3.4节:多边合成科
::x+4 x+4
::x+1 x+1
::a+5 +5
::x+2 x+2
::x2+4x- 1+12x+2
::4x2+17x+16
::2 - 1 - 42x+1
::2x3-33x2+267x-2,423+21,849x+9
::x2+2x- 1
::3x4+3x3+7x2+7x6+6+4x-1
Numbers 6 and 9 have no remainder. Having no remainder means the divisor in synthetic division is a root.
::第6和第9号没有剩余部分。没有剩余部分,就意味着合成部分的断层是根。
is a factor when
is a zero.
if and only if
is a zero.
:x-k) 是指当 k 是 0 时的系数。 f(k)=0, 前提是 k 是 0 。
a.
b. The remainder is
, which is the same as
.
::a. f(-2)=-14 b. 其余为-14,与f(-2)相同。
::x=4-4、16-52
::x=5,%2x=5,%2
::x=2,13,12 x=2,13,12
::x=4、4、4、1、2
::x=-2,0,-32,13
The area of the base is
::基座区域为 x2-5x-12。
::D=14h+20h2
Section 3.5: Real Zeros of Polynomials
::第3.5节:多元体实际零
::x=13,12,2
::x=4、4、4、1、2
::x=3,124
::x=32;其他根复杂
::x=5;其他根复杂
::x=-52,1,273
::x=43,3,3,2,2
::x=4、4、32、32、32
::x=5-5、13、13.5
. There are two real solutions. The other two solutions are imaginary.
::x213. 有两种真正的解决方案,其他两种解决方案是想象的。
Section 3.6: Fundamental Theorem of Algebra
::第3.6节:代数基本理论
The degree of the polynomial is the number of roots with multiplicity.
::多元度的程度是有多重性的根数。
Multiplicity refers to a root that counts more than once, because when the polynomial is in factored form, the degree of its corresponding binomial is greater than 1.
::多重性是指一个不止一次的根,因为当多元性以因数形式出现时,其相应的二元性的程度大于1。
::-3i -3i
Section 3.7: Approximating Real Zeros of Polynomial Functions
::第3.7节:多元函数接近实际零
a) Leading coefficient: 3; Degree: 5
b) 1 real zero at approximately -1.4
c)
4 imaginary zeros
:a) 主系数: 3; 度: 5b) 1个实际零,约1.4c) 4个假想零
a) Leading coefficient: -1; Degree: 3
b) 1 real zero at approximately 2
c) 2 imaginary zeros
:a) 主系数:-1;度:3b) 1实际零,约2c) 2想象零
a) Leading coefficient: 1/2; Degree: 4
b) 2 real zeros at approximately -6.3 and -1
c) 2 imaginary zeros
:a) 主系数:1/2; 度: 4b) 2个实际零点,约-6.3和-1c) 2个想象零
a) Leading coefficient: 1; Degree: 5
b) 5 real zeros at approximately -2.6 (multiplicity 2), -1, and 2.6 (multiplicity 2)
c) 0 imaginary zeros
:a) 主系数:1;第1级:5b)5个实际零点,约-2.6(多重2)、-1和2.6(多重2)、c)0个想象零
a) Leading coefficient: 1; Degree: 4
b) 4 real zeros at approximately -1 and 3 (multiplicity 3)
c) 0 imaginary zeros
:a) 主系数:1;第1级:4b)4个实际零点,大约为-1和3(多重3)c)0个想象零;
[-2, -1]
[-1, 3]
[-2, 4]
[-2, 2]
The Bounded Roots Theorem is based on continuous functions, and this rational function is discontinuous at x = -3.5.
::断开根定理基于连续函数, 这个理性函数在 x = - 3. 5 时不连续 。
VA: x = -6, x = 1; HA: y = 0; Intercepts: (0, -5/6), (-5/2, 0)
::VA: x = - 6, x = 1;HA: y = 0;拦截: (0,-5/6), (-5/2, 0)
VA: x = 3; SA: y = -1/2x; Intercepts: (0, -2/3), (-1, 0), (4, 0)
::VA: x = 3; SA: y = - 1/2x; 拦截: (0, - 2/3), (-1, 0), (4, 0)
If we divide,
This can also be found by factoring the numerator and denominator, and canceling the like factor of
. This creates a
hole,
not an asymptote.
::如果我们分隔, 3x2- x- 103x+5=x-2, 也可以通过乘以分子和分母, 并取消类似因数 3x+5 来找到。 这会造成一个洞, 而不是一个小洞 。
Section 3.9: Analysis of Rational Functions
::第3.9节:合理职能分析
Asymptotes: VA: x = -3/2; HA: y = 0
Intercepts: (0, 1/3), there is no x-intercept
Hole: (7, 1/17)
::单位数: VA: x = - 3/2; HA: y = 0 拦截: (0, 1/3), 没有 x 拦截洞: (7, 1/17)
Asymptotes: VA: x = -2, x = 2; SA: y = 5x – 9
Holes: none
Intercepts: approximately (-0.68, 0), (0.12, 0); (0, -0.25)
Sketch:
::微粒: VA: x = - 2, x = 2; SA: y = 5x - 9 孔: 无截取器: 大约( -0. 68, 0, 0, 0, 0, 0, 0. 12, 0; (0, 0,-0. 25); 缓存器: 5x3 - 9x2 - 7x+1x2 - 4)
No asymptotes
Intercepts: (0, -5), (5, 0)
Hole (-6, -11)
::无空位拦截: (0, -5, (5, 0) 洞口 (6, - 11)
Asymptotes: VA: x = -2; SA: y = 4x – 14
Holes: none
Intercepts: approximately ( -1.4, 0); (0, 7/4)
Sketch:
::微粒: VA: x = - 2; SA: y = 4x - 14洞: 无截取器: 大约( -1.4, 0); (0, 7/4) 缓存器: 4x3+2x2+7( x+2) 2
Asymptotes: VA: x = 2; SA: y = x + 3
Intercepts (0, 0), (-1, 0)
Hole: (3, 12)
::微粒: VA: x = 2; SA: y = x x + 3 拦截( 0, 0, 0, 1, 0) 洞口 3, 12)
Asymptotes: VA: x = 0; SA: y = -6x+8
Holes: none
Intercepts: approximately (1.73, 0); no y-intercept
Sketch:
::单位数: VA: x = 0; SA: y = - 6x+8 孔: 无截取器: 大约( 1. 73, 0 ); 没有 y 截取线: - 6x3+8x2+7x2
Asymptotes: VA: none; HA: y = -5
Holes: none
Intercepts: no x-intercept; (0, -5/2)
Sketch:
::单位数: VA: 无; HA: y = - 5洞: 无拦截: 没有 X 拦截; (0, - 5/2) 折叠: - 5x2 - 2x - 5x2+2
Asymptotes: VA: x = cubic root of 2, or approx. 1.26; HA: y = 0
Holes: none
Intercepts: (1 , 0); (0, 1/2)
Sketch:
::单位数: VA: x = 2 的立根或约1. 26; HA: y = 0 孔: 无截取器(1, 0); (0, 1, 1/2) 缓存器: x-1x3 - 2
Section 3.10: Polynomial and Rational Inequalities
::第3.10节:多元和合理不平等
::- 3x1
::x13 或 x2
::-52x13号
::x15 或 x2
::x0 或 x>12
::-12 <x <0 或 x>32
::-2 <x <0 或 0 <x <2
::- 12x=12 或 x=2
::-3<n<<-1或1<n<2
::-n-2 或 2n<5
::n-3 或 -52n<13 或 n3
::n <-32 或 -43 <n < 12 或 n>12
::036.490
::x4.567 或 - 1.294x_1.861
::-4.667 <x<4.044或5.000 <x<6.623
The graph would be as follows, with missing values anywhere
:
::y>3x-2,x% 23 图表如下,在 x= 23 处缺少值 :
a)
, so 60 ohms is the max resistance.
b)
20 ohms, based on how the 2nd resistor would cancel out in this equation.
:a) R2<60,所以60 ohms是最大阻力。 (b) 20 ohms,基于第二抵抗者如何在这个方程式中取消。