Section outline

  • Section 8.2: Basic Trigonometric Identities
    ::第8.2节:基本三角特征

    1.   cot θ = a d j o p p = ( a d j h y p ) ( o p p h y p ) = cos θ sin θ  
      ::cotadjopp=( adjhyp)( opphyp) =cossin =( adjhyp)( opphyp) =cossin =( adjhyp)( adjhyp)( opphyp) =cos
    2. Start with the graph of  cos θ . This is the same as the graph of cos ( - θ ) . Then, cos ( - ( θ π 2 ) )  shifts horizontally to the right π 2 ,  creating the graph of sin θ .
      ::以 cos 的图形开始。 这和 cos (- ) 的图形相同。 然后, cos (- ( 2)) 水平向右移动 % 2 , 创建 sin 的图形 。
    3.   sec θ = h y p a d j = 1 ( a d j h y p ) = 1 cos θ      
      ::hypadj=1 (adjhyp)=1cos
    4.   tan θ cot θ = sin θ cos θ cos θ sin θ = 1  
      ::塔那尼科特 科斯科斯 科斯科斯尼
    5.   sin θ csc θ = sin θ 1 sin θ = 1  
      ::一九九九年一月一日 一月一日
    6. sin θ sec θ = sin θ 1 cos θ = tan θ  
      ::
    7.   cos θ csc θ = cos θ 1 sin θ = cot θ  
      :sadc) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (l) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
    8. -0.81
    9. 0.5
    10. 4
    11. - 1 0.7 - 1.43  
    12. If a function is even, then its graph is symmetric with respect to the  y -axis. If a function is odd, then it has 180° rotation symmetry about the origin.
      ::如果函数是偶数,则其图形与 Y 轴对称。如果函数是奇数,则其原值为180°旋转对称。
    13. tan x sec x csc x cot x = tan x sin x cos x cos x sin x = tan x  
      ::tanxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    14. sin 2 x sec x tan x csc x = sin x sin x cos x sin x sin x cos x = 1  
      ::xxxxxxxxxxxxxxxxxxxxx=1
    15. cos x tan x = cos x sin x cos x = sin x  
      ::COsx- tanx=cosxxxxxxxxxxxxxxxsinxx=sinxxxx =cosxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

     

    Section 8.3: Pythagorean T rigonometric Identities 
    ::第8.3节:毕达哥里安三角特征

    1. ( 1 cos 2 x ) ( 1 + cot 2 x ) = sin 2 x csc 2 x = sin 2 x 1 sin 2 x = 1  
      :sad1- cos2x)( 1+cot2x) =sin2xcsc2x =sin2xxxxxxxxxxxx2xxxin2xx2xxxx2xxx=1)
    2. cos x ( 1 sin 2 x ) = cos x ( cos 2 x ) = cos 3 x  
      ::COsx(1 - 辛2x) =cosx( 辛2x) =cos3x
    3. sin 2 x = ( 1 cos 2 x ) = ( 1 cos x ) ( 1 + cos x )  
      ::exin2x=( 1 - cos2x) =( 1 - cosx)( 1+cosx)
    4. sin 2 x + cos 2 x csc x = 1 csc x = sin x  
      ::sin2x+cos2xscscx=1csccx=sinx
    5. sin 4 x cos 4 x = ( sin 2 x cos 2 x ) ( sin 2 x + cos 2 x ) = ( sin 2 x cos 2 x ) 1 = sin 2 x cos 2 x  
      :sadsin2x+cos2x) = (sin2x-cos2x) = (sin2x-cos2x) = (sin2x-cos2x) = 1=sin2x-cos2x
    6. ( sin 2 x sin 4 x ) ( cos x ) = sin 2 x ( 1 sin 2 x ) ( cos x ) = sin 2 x ( cos 2 x ) ( cos x ) = sin 2 x ( cos 3 x )  
      :sad辛2x-辛4x(辛2x) = 辛2x(1-辛2x(辛2x)(辛2x) = 辛2x(辛2x)(辛2x) = 辛2x(辛2x) = 辛2x(辛3x))
    7. sec 3 x  
      ::秒3x
    8. sin 2 x  
      ::罪恶2x
    9. 1 sin x  
      ::1 - 辛辛毒
    10. sin x  
      ::异性
    11. sin 2 x  
      ::罪恶2x
    12. sec 4 x  
      ::秒4x
    13. sec x  
      ::秒数
    14. tan 2 x  
      ::太阳2x
    15. cos x  
      ::COsx COsx

     

    Section 8.4: Sum and Difference Identities
    ::第8.4节:总和和区别

    1. 3 1 2 2  
    2. - 3 1 2 2  
    3. - 1 + 3 2 2  
    4. 1 + 3 2 2  
    5. - 2 ( 1 + 3 )  
    6. 2 + 3  

    7. sin ( α + β ) = sin ( α ( - β ) ) = sin α cos ( - β ) cos α sin ( - β ) = sin α cos β cos ( α ) ( - 1 ) ( sin β ) = sin α cos β + cos α sin β  
      :sadsin) = 辛( ( β) = 辛egg - 辛( β) 辛( β) = 辛( β) 辛( β) 辛( α) ( α) (-1) 辛( 辛) = 辛( 辛) 辛egg 辛( β) 辛( β) - 辛( β) 辛( β) = 辛( β) 辛( β) 辛( β) 辛egg 辛( β) 辛eggeggeggegg 辛( 辛) 辛( 辛) 辛( 辛) 辛( 辛) 辛( 辛) 辛egg 辛( sin) ?

    8. tan ( α + β ) = sin ( α + β ) cos ( α + β ) = sin α cos β + cos α sin β cos α cos β sin α sin β = sin α cos β cos α cos β + cos α sin β cos α cos β cos α cos β cos α cos β + sin α sin β cos α cos β = tan α + tan β 1 tan α tan β
      :sad) = 辛egg = 辛egg egg egg egg egg egg egg egg egg egg egg egg egg egg egg egg egg egg- ( egg- egg- egg

    9. tan ( α β ) = tan ( α + ( - β ) ) = tan α + tan ( - β ) 1 tan α tan ( - β ) = tan α tan β 1 + tan α tan β  
      ::tanegg =tan( ( β) ) =tan( ( β) ) =tan( β) 1 - tan- tan( β) =tan( β) tan( β) =tanegg tan- tan( 1) +tan( α) β
    10. 1 2  
    11. 1 2  
    12. 3 2  
    13. cos ( α β ) = cos α cos β + sin α sin β = 2 cos α cos β  
      ::COSegg = COSALCOS = COSALSASIN = 2COSαSOS β

    14. tan ( x + π 4 ) = tan x + tan π 4 1 tan x tan π 4 = tan x + 1 1 tan x = 1 + tan x 1 tan x  
      ::tanx+tan*%4 = tanx+tan*%41 - tanxtan*4 = tanx+11-tanx=1+tanx1 - tanx

    15. sin ( x + π ) = sin x cos π + cos x sin π = sin x ( - 1 ) + cos x ( 0 ) = - sin x
      :sadx%) =sinxcos cosxsin sin(-1) +cosx(0) =-sinx

     

    Section 8.5: Double, Half, and Power Reducing Identities
    ::第8.5节:双重、一半和减少功率

    1.   cos 2 x = cos ( x + x ) = cos x cos x sin x sin x = cos 2 x sin 2 x  
      ::CO2x=cos(x+x)=cosxxcosx-sinsinx=cos2x-sin2xx
    2. cos 2 x = cos 2 x sin 2 x = ( 1 sin 2 x ) sin 2 x = 1 2 sin 2 x  
      ::CO2x=cos2x-sin2x=(1-sin2x)-sin2x=1-2sin2x
    3. cos 2 x = cos 2 x sin 2 x = cos 2 x ( 1 cos 2 x ) = cos 2 x 1 + cos 2 x = 2 cos 2 x 1    
      ::CO2x=cos2x-sin2x=cos2x-(1-cos2x)=cos2x-1+cos2x=2cos2x-1
    4. 1 + cos 2 x 2 = 1 + cos 2 x sin 2 x 2 = 1 + cos 2 x ( 1 cos 2 x ) 2 = 2 cos 2 x 2 = cos 2 x  
      ::1+cos2x2=1+cos2x-sin2x2=1+cos2x-(1-cos2x)2=2cos2x2=cos2x
    5. tan 2 x = sin 2 x cos 2 x = 1 cos 2 x 2 1 + cos 2 x 2 = 1 cos 2 x 1 + cos 2 x   
      ::tan2x=sin2xxcos2xx=1-cos2x21+cos2x2=1-cos2x1+cos2xxxxxx
    6. tan x 2 = ± tan 2 x 2 = ± 1 cos x 1 + cos x  
      ::tan2x2\\\ tan2x2\\\ 1 - cosx1+cosx
    7. csc 2 x = 1 sin 2 x = 1 2 sin x cos x = 1 2 csc x sec x  
      ::csc2x=1sin2x=12sinxcosx=12cscxsecx
    8. cot 2 x = cos 2 x sin 2 x = cos 2 x sin 2 x 2 sin x cos x = cos 2 x sin 2 x sin 2 x 2 sin x cos x sin 2 x = cot 2 x 1 2 cot x  
      ::comt2x=cos2xxin2xx=cos2xx-sin2xxxxxxxxxxxxxxxxxxxxxxxxxxxx2xxxxxxxxxxx2xx=cot2x-12ctx
    9. tan x 2 = ± 1 cos x 1 + cos x = ± 1 cos x 1 + cos x 1 cos x 1 cos x = 1 cos x 1 cos 2 x = 1 cos x sin x  
      :sadcosx) =1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1=1 - COsx1 - COs2x1 - COs2x=1 - COsxsinx
    10. tan x 2 = 1 cos x sin x = 1 cos x sin x 1 + cos x 1 + cos x = 1 cos 2 x sin x ( 1 + cos x ) = sin 2 x sin x ( 1 + cos x ) = sin x 1 + cos x  
      ::thanx2=1-cosxsinx=1-cosxsinxx=1-1+cosx1+cosxx=1-cos2xxx(1+cosxx)=sin2xsinx(1+cosx)=sin2xx(1+cosxx)=sinx1+cosxx
    11. 1 8 ( 4 cos ( 2 x ) + cos ( 4 x ) + 3 )  
      ::18( 4cos(2x)+cos( 4x)+3)
    12. 2 1 1 2  
    13. 2 3  
    14. 2 1  
    15. 2 1 + 1 2  

     

    Section 8.6: Trigonometric Equations
    ::第8.6节:三角等数

    1. x = 0  
      ::x=0x=0
    2. x = 0 ,   π 2 ,   3 π 2  
      ::x=0, 2, 32
    3. x = 1.786 ,   4.497  
      ::x=1.786, 4.497
    4. No solution
      ::无解决方案
    5. x = 0.916 ,   1.98 ,   4.058 ,   5.12  
      ::x=0.916, 1.98, 4.058, 5.12
    6. No solution
      ::无解决方案
    7. Identity
      ::身份身份特征
    8. x = 120   or   240  
      ::x=120或240
    9. x = 180  
      ::x=180__________________________________________________________________________________________
    10. x = 3 π  
      ::x=3
    11. x = 13 π 6 ,   17 π 6  
      ::x=136, 176
    12. x = 2 π ,   3 π  
      ::x=2, 3
    13. x = 5 π 2  
      ::x=52
    14. x = 7 π 3 ,   8 π 3 ,   10 π 3 ,   11 π 3  
      ::x=7Q3, 8Q3, 10Q3, 11Q3
    15. Identity
      ::身份身份特征