16.8 答复 -- -- 第8章:分析三角测量
章节大纲
-
Section 8.2: Basic Trigonometric Identities
::第8.2节:基本三角特征-
cot
θ
=
a
d
j
o
p
p
=
(
a
d
j
h
y
p
)
(
o
p
p
h
y
p
)
=
cos
θ
sin
θ
::cotadjopp=( adjhyp)( opphyp) =cossin =( adjhyp)( opphyp) =cossin =( adjhyp)( adjhyp)( opphyp) =cos -
Start with the graph of
cos
θ
. This is the same as the graph of
cos
(
-
θ
)
. Then,
cos
(
-
(
θ
−
π
2
)
)
shifts horizontally to the right
π
2
,
creating the graph of
sin
θ
.
::以 cos 的图形开始。 这和 cos (- ) 的图形相同。 然后, cos (- ( 2)) 水平向右移动 % 2 , 创建 sin 的图形 。 -
sec
θ
=
h
y
p
a
d
j
=
1
(
a
d
j
h
y
p
)
=
1
cos
θ
::hypadj=1 (adjhyp)=1cos -
tan
θ
⋅
cot
θ
=
sin
θ
cos
θ
⋅
cos
θ
sin
θ
=
1
::塔那尼科特 科斯科斯 科斯科斯尼 -
sin
θ
⋅
csc
θ
=
sin
θ
⋅
1
sin
θ
=
1
::一九九九年一月一日 一月一日 -
sin
θ
⋅
sec
θ
=
sin
θ
⋅
1
cos
θ
=
tan
θ
:: -
cos
θ
⋅
csc
θ
=
cos
θ
⋅
1
sin
θ
=
cot
θ
:c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (l) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c)) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
- -0.81
- 0.5
- 4
- - 1 0.7 ≈ - 1.43
-
If a function is even, then its graph is symmetric with respect to the
y
-axis. If a function is odd, then it has 180° rotation symmetry about the origin.
::如果函数是偶数,则其图形与 Y 轴对称。如果函数是奇数,则其原值为180°旋转对称。 -
tan
x
sec
x
csc
x
⋅
cot
x
=
tan
x
sin
x
cos
x
cos
x
sin
x
=
tan
x
::tanxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx -
sin
2
x
sec
x
tan
x
⋅
csc
x
=
sin
x
sin
x
cos
x
sin
x
sin
x
cos
x
=
1
::xxxxxxxxxxxxxxxxxxxxx=1 -
cos
x
⋅
tan
x
=
cos
x
⋅
sin
x
cos
x
=
sin
x
::COsx- tanx=cosxxxxxxxxxxxxxxxsinxx=sinxxxx =cosxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Section 8.3: Pythagorean T rigonometric Identities
::第8.3节:毕达哥里安三角特征-
(
1
−
cos
2
x
)
(
1
+
cot
2
x
)
=
sin
2
x
⋅
csc
2
x
=
sin
2
x
⋅
1
sin
2
x
=
1
:1- cos2x)( 1+cot2x) =sin2xcsc2x =sin2xxxxxxxxxxxx2xxxin2xx2xxxx2xxx=1)
-
cos
x
(
1
−
sin
2
x
)
=
cos
x
(
cos
2
x
)
=
cos
3
x
::COsx(1 - 辛2x) =cosx( 辛2x) =cos3x -
sin
2
x
=
(
1
−
cos
2
x
)
=
(
1
−
cos
x
)
(
1
+
cos
x
)
::exin2x=( 1 - cos2x) =( 1 - cosx)( 1+cosx) -
sin
2
x
+
cos
2
x
csc
x
=
1
csc
x
=
sin
x
::sin2x+cos2xscscx=1csccx=sinx -
sin
4
x
−
cos
4
x
=
(
sin
2
x
−
cos
2
x
)
(
sin
2
x
+
cos
2
x
)
=
(
sin
2
x
−
cos
2
x
)
⋅
1
=
sin
2
x
−
cos
2
x
:sin2x+cos2x) = (sin2x-cos2x) = (sin2x-cos2x) = (sin2x-cos2x) = 1=sin2x-cos2x
-
(
sin
2
x
−
sin
4
x
)
(
cos
x
)
=
sin
2
x
(
1
−
sin
2
x
)
(
cos
x
)
=
sin
2
x
(
cos
2
x
)
(
cos
x
)
=
sin
2
x
(
cos
3
x
)
:辛2x-辛4x(辛2x) = 辛2x(1-辛2x(辛2x)(辛2x) = 辛2x(辛2x)(辛2x) = 辛2x(辛2x) = 辛2x(辛3x))
-
sec
3
x
::秒3x -
sin
2
x
::罪恶2x -
1
−
sin
x
::1 - 辛辛毒 -
sin
x
::异性 -
sin
2
x
::罪恶2x -
sec
4
x
::秒4x -
sec
x
::秒数 -
tan
2
x
::太阳2x -
cos
x
::COsx COsx
Section 8.4: Sum and Difference Identities
::第8.4节:总和和区别- √ 3 − 1 2 √ 2
- - √ 3 − 1 2 √ 2
- - 1 + √ 3 2 √ 2
- 1 + √ 3 2 √ 2
- - √ 2 ( 1 + √ 3 )
- 2 + √ 3
-
sin ( α + β ) = sin ( α − ( - β ) ) = sin α cos ( - β ) − cos α sin ( - β ) = sin α cos β − cos ( α ) ( - 1 ) ( sin β ) = sin α cos β + cos α sin β
:sin) = 辛( ( β) = 辛
- 辛( β) 辛( β) = 辛( β) 辛( β) 辛( α) ( α) (-1) 辛( 辛) = 辛( 辛) 辛
辛( β) 辛( β) - 辛( β) 辛( β) = 辛( β) 辛( β) 辛( β) 辛
辛( β) 辛
辛
辛
辛
辛( 辛) 辛( 辛) 辛( 辛) 辛( 辛) 辛( 辛) 辛
辛( sin) ?
-
tan ( α + β ) = sin ( α + β ) cos ( α + β ) = sin α cos β + cos α sin β cos α cos β − sin α sin β = sin α cos β cos α cos β + cos α sin β cos α cos β cos α cos β cos α cos β + sin α sin β cos α cos β = tan α + tan β 1 − tan α tan β
:) = 辛
= 辛
- (
-
-
-
tan ( α − β ) = tan ( α + ( - β ) ) = tan α + tan ( - β ) 1 − tan α tan ( - β ) = tan α − tan β 1 + tan α tan β
::tan=tan( ( β) ) =tan( ( β) ) =tan( β) 1 - tan- tan( β) =tan( β) tan( β) =tan
tan- tan( 1) +tan( α) β
- 1 2
- 1 2
- √ 3 2
-
cos
(
α
−
β
)
=
cos
α
cos
β
+
sin
α
sin
β
=
2
cos
α
cos
β
::COS= COSALCOS = COSALSASIN = 2COSαSOS β
-
tan ( x + π 4 ) = tan x + tan π 4 1 − tan x tan π 4 = tan x + 1 1 − tan x = 1 + tan x 1 − tan x
::tanx+tan*%4 = tanx+tan*%41 - tanxtan*4 = tanx+11-tanx=1+tanx1 - tanx -
sin ( x + π ) = sin x cos π + cos x sin π = sin x ( - 1 ) + cos x ( 0 ) = - sin x
:x%) =sinxcos cosxsin sin(-1) +cosx(0) =-sinx
Section 8.5: Double, Half, and Power Reducing Identities
::第8.5节:双重、一半和减少功率-
cos
2
x
=
cos
(
x
+
x
)
=
cos
x
cos
x
−
sin
x
sin
x
=
cos
2
x
−
sin
2
x
::CO2x=cos(x+x)=cosxxcosx-sinsinx=cos2x-sin2xx -
cos
2
x
=
cos
2
x
−
sin
2
x
=
(
1
−
sin
2
x
)
−
sin
2
x
=
1
−
2
sin
2
x
::CO2x=cos2x-sin2x=(1-sin2x)-sin2x=1-2sin2x -
cos
2
x
=
cos
2
x
−
sin
2
x
=
cos
2
x
−
(
1
−
cos
2
x
)
=
cos
2
x
−
1
+
cos
2
x
=
2
cos
2
x
−
1
::CO2x=cos2x-sin2x=cos2x-(1-cos2x)=cos2x-1+cos2x=2cos2x-1 -
1
+
cos
2
x
2
=
1
+
cos
2
x
−
sin
2
x
2
=
1
+
cos
2
x
−
(
1
−
cos
2
x
)
2
=
2
cos
2
x
2
=
cos
2
x
::1+cos2x2=1+cos2x-sin2x2=1+cos2x-(1-cos2x)2=2cos2x2=cos2x -
tan
2
x
=
sin
2
x
cos
2
x
=
1
−
cos
2
x
2
1
+
cos
2
x
2
=
1
−
cos
2
x
1
+
cos
2
x
::tan2x=sin2xxcos2xx=1-cos2x21+cos2x2=1-cos2x1+cos2xxxxxx -
tan
x
2
=
±
√
tan
2
x
2
=
±
√
1
−
cos
x
1
+
cos
x
::tan2x2\\\ tan2x2\\\ 1 - cosx1+cosx -
csc
2
x
=
1
sin
2
x
=
1
2
sin
x
cos
x
=
1
2
csc
x
sec
x
::csc2x=1sin2x=12sinxcosx=12cscxsecx -
cot
2
x
=
cos
2
x
sin
2
x
=
cos
2
x
−
sin
2
x
2
sin
x
cos
x
=
cos
2
x
−
sin
2
x
sin
2
x
2
sin
x
cos
x
sin
2
x
=
cot
2
x
−
1
2
cot
x
::comt2x=cos2xxin2xx=cos2xx-sin2xxxxxxxxxxxxxxxxxxxxxxxxxxxx2xxxxxxxxxxx2xx=cot2x-12ctx -
tan
x
2
=
±
√
1
−
cos
x
1
+
cos
x
=
±
√
1
−
cos
x
1
+
cos
x
⋅
√
1
−
cos
x
1
−
cos
x
=
1
−
cos
x
√
1
−
cos
2
x
=
1
−
cos
x
sin
x
:cosx) =1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1 - COsx1=1 - COsx1 - COs2x1 - COs2x=1 - COsxsinx
-
tan
x
2
=
1
−
cos
x
sin
x
=
1
−
cos
x
sin
x
⋅
1
+
cos
x
1
+
cos
x
=
1
−
cos
2
x
sin
x
(
1
+
cos
x
)
=
sin
2
x
sin
x
(
1
+
cos
x
)
=
sin
x
1
+
cos
x
::thanx2=1-cosxsinx=1-cosxsinxx=1-1+cosx1+cosxx=1-cos2xxx(1+cosxx)=sin2xsinx(1+cosx)=sin2xx(1+cosxx)=sinx1+cosxx -
1
8
(
4
cos
(
2
x
)
+
cos
(
4
x
)
+
3
)
::18( 4cos(2x)+cos( 4x)+3) - √ 2 1 − 1 √ 2
- 2 − √ 3
- √ 2 − 1
- √ 2 1 + 1 √ 2
Section 8.6: Trigonometric Equations
::第8.6节:三角等数-
x
=
0
::x=0x=0 -
x
=
0
,
π
2
,
3
π
2
::x=0, 2, 32 -
x
=
1.786
,
4.497
::x=1.786, 4.497 -
::无解决方案 -
x
=
0.916
,
1.98
,
4.058
,
5.12
::x=0.916, 1.98, 4.058, 5.12 -
No solution
::无解决方案 -
Identity
::身份身份特征 -
x
=
120
∘
or
240
∘
::x=120或240 -
x
=
180
∘
::x=180__________________________________________________________________________________________ -
x
=
3
π
::x=3 -
x
=
13
π
6
,
17
π
6
::x=136, 176 -
x
=
2
π
,
3
π
::x=2, 3 -
x
=
5
π
2
::x=52 -
x
=
7
π
3
,
8
π
3
,
10
π
3
,
11
π
3
::x=7Q3, 8Q3, 10Q3, 11Q3 -
Identity
::身份身份特征
-
cot
θ
=
a
d
j
o
p
p
=
(
a
d
j
h
y
p
)
(
o
p
p
h
y
p
)
=
cos
θ
sin
θ