Section outline

  • Section 10.2: Systems of Two Equations and Two Unknowns
    ::第10.2节:两个等同和两个未知的系统

    1. (-7, 3)
    2. (3, 8)
    3. ( 143 18 , - 28 9 )  
    4. (6, 10)
    5. (3, 9)
    6. (8, 2)
    7. (10, -10)
    8. (8, -5)
    9. (0, 5)
    10. ( 33 19 , 3 19 )  
    11. A system of equations has no solution if, when you are solving, you end up with a false statement like 0 = 2. 
      ::等式系统无法解决问题,如果在解决时,最后出现0=2的虚假声明。
    12. Answers will vary. Possible answers: If a system of equations has no solution, it means that the graphs do not intersect. For a system of two variables , the lines would be parallel.
      ::答案会有所不同。 可能的答案是: 如果一个方程式系统没有解答, 这意味着图形不会交叉。 对于由两个变量组成的系统, 线条将是平行的 。
    13. A system where the two equations are equivalent (one is a multiple of the other) will produce an infinite number of solutions.
      ::两个方程式等同的系统(一个是另一个的倍数)将产生无限数量的解决方案。
    14. (2, 9)
    15. (7, 1)
    16. 99 and 51
      ::99和51
    17. $68,750 in Company A, and $31,250 in Company B
      ::A公司68 750美元,B公司31 250美元
    18. Clownfish cost $1.95, and goldfish cost $1.25.
      ::小丑鱼费用为1.95美元,金鱼费用为1.25美元。
    19. 26 and 9
      ::第26和9条
    20. 5 cappuccinos and 4 lattes
      ::5个卡布奇诺和4个拿铁

     

    Section 10.3: Solving Linear Systems in Three Variables
    ::第10.3节:三个变量中的解决线性系统

    1. Yes
      ::是 是
    2. No
      ::否 无
    3. Yes
      ::是 是
    4. Yes
      ::是 是
    5. (2, 7, 8)
    6. (-4, 1, 6)
    7. (5, 9, -2)
    8. (2, 1, 2)
    9. (- 8 3 , 0, 0)
    10. (-7, 5, 4)
    11. (1, -4, 0)
    12. No solution
      ::无解决方案
    13. (-1, 0, -1)
    14. (4, -2, 1)
    15. y = 3 x ;   z = 0  
      ::y=3 - x; z=0
    16.  
      A + O + B = 9 2 A + 2 O = 10 2 O + B = 10  
      Apples cost $2; onions cost $3; a basket of blueberries costs $4.
      ::A+O+B=92A+2O=102O+B=10苹果费用2美元;洋葱费用3美元;蓝莓篮子费用4美元。
    17. 735
    18. $24,000 in the savings account; $11,000 in the time deposit; $7,000 in the bond
      ::储蓄账户24 000美元;定期存款11 000美元;保证金7 000美元
    19. 7 nickels, 6 dimes, and 12 quarters
      ::7个镍、6个零和12个季度
    20. 126 adult, 92 children, and 42 student tickets
      ::126名成人、92名儿童和42张学生票

     

    Section 10.4: Matrices to Represent Data
    ::第10.4节:将数据表示数

    1. 2 x 4
      ::2 x 4
    2. 2 x 2
      ::2 x 2
    3. 4 x 2
      ::4 x 2 4 x 2
    4. 4 x 3
      ::4 x 3 4 x 3
    5. 1 x 2
      ::1 x 2
    6. Answers will vary.
      ::答案将各有不同。
    7. Answers will vary.
      ::答案将各有不同。
    8. A diagonal matrix
      ::对角矩阵
    9. [ 0 - 1 - 2 1 0 - 1 ]  
    10. The rows represent the days of the week, and the columns represent the weeks of working.
      ::各行代表每周的天数,各栏代表工作周。
    11. $124
    12. $83
    13. Fridays
      ::星期五 星期五
    14. Thursdays
      ::星期四 星期四
    15. No. The entries of matrices must be numbers, not words.
      ::否。矩阵条目必须是数字,而不是单词。

     

    Section 10.5: Matrix Algebra
    ::第10.5节:矩阵体代数

    1.   [ 35 26 50 34 ]  
    2. Not possible—you can't multiply a 2 x 3 matrix by a 2 x 2 matrix.
      ::不可能—— 您不能将 2 x 3 矩阵乘以 2 x 2 矩阵 。
    3. [ 46 146 8 23 ]  
    4. [ 0 12 20 12 4 24 ]  
    5. [ 16 13 4 10 ]  
    6. [ 3 - 7 - 2 - 6 ]  
    7. [ 22 26 6 16 ]  
    8. [ 39 132 94 30 60 64 ]  
    9. Not possible—you can't multiply a 2 x 3 matrix by a 2 x 2 matrix.
      ::不可能—— 您不能将 2 x 3 矩阵乘以 2 x 2 矩阵 。
    10. They both equal  [ 52 40 73 50 ] .
      ::两者相等[52407350]。
    11. They both equal  [ 18 12 27 18 ] .
      ::两者相等[18122718]。
    12.   [ 356 866 122 528 653 285 939 132 205 ]   
    13. [ 624 118 68 684 312 378 1 , 566 46 266 ]  
    14. [ 132 288 84 372 164 376 248 300 288 ]  
    15. [ 21 , 148 315 , 181 23 , 377 49 , 708 419 , 179 29 , 539 37 , 679 672 , 733 56 , 811 ]  
    16. Answers will vary. 
      ::答案将各有不同。
    17. Friday: $1,019.25; Saturday: $1,295.25; Sunday: $857.75. Total: $3,172.25
      ::星期五:1 019.25美元;星期六:1 295.25美元;星期日:857.75美元。

     

    Section 10.6: Row Operations and Row Echelon Forms
    ::第10.6节:行操作和行梯表

    1. Answers will vary.
      ::答案将各有不同。
    2. Answers will vary.
      ::答案将各有不同。
    3. Add a multiple of one row to another row; scale a row by multiplying through by a non-zero constant; swap two rows.
      ::将一行的倍数加到另一行;以非零常数乘以一行;交换两行。
    4. The rows are linearly independent.
      ::各行是线性独立的。
    5. Answers will vary.
      ::答案将各有不同。
    6. The rows are linearly independent because reduced row echelon form is the identity matrix.
      ::各行是线性独立的,因为缩小的行梯层表是身份矩阵。
    7. Answers will vary.
      ::答案将各有不同。
    8. The rows are linearly independent because reduced row echelon form is the identity matrix.
      ::各行是线性独立的,因为缩小的行梯层表是身份矩阵。
    9. Answers will vary.
      ::答案将各有不同。
    10. Reduced row echelon form is  [ 1 2 0 0 0 0 1 0 0 0 0 1 ] . Because there are no zero-only rows, the rows of the original matrix were linearly independent.
      ::缩排梯层表为[1200010010001],由于没有零单行,原始矩阵的行线性独立。
    11. Answers will vary.
      ::答案将各有不同。
    12. Reduced row echelon form is [ 1 0 0 1 0 0 ] . The rows of matrix D were not linearly independent.
      ::减少的排梯表为[100100]0. 矩阵D各行没有线性独立。
    13. Answers will vary.
      ::答案将各有不同。
    14. Reduced row echelon form is [ 1 0 0 0 1 2 0 0 0 ] . The rows of matrix E were not linearly independent.
      ::缩排梯层表为[10012000],表格E各行并非线性独立。
    15. Answers will vary.
      ::答案将各有不同。
    16. The rows are linearly independent because reduced row echelon form is the identity matrix.
      ::各行是线性独立的,因为缩小的行梯层表是身份矩阵。

     

    Section 10.7: Augmented Matrices
    ::第10.7节:增加入学人数

    1. (-3, 4)
    2. (1, 6)
    3. Infinite number of solutions
      ::无限数的解决方案
    4. (3, 2)
    5. No solution. The lines are parallel and do not intersect.
      ::否。 线条是平行的, 不交叉 。
    6. (1, 4, 6)
    7. (-3, 1, 5)
    8. (2, 5, 3)
    9. Infinite number of solutions
      ::无限数的解决方案
    10. (3, 2, 8)
    11. (5, -1, 2)
    12. No solution. If you multiply R 1  by 2 and add it to R 3 , you end up with 0 = 13. Therefore, no solution exists.
      ::否解决方案。如果将R1乘以 2 乘以 2 并添加到 R3, 最终结果为 0 = 13, 因此不存在解决方案 。
    13. (-4, 5, 3)
    14. (1, 6, 8)
    15. (-3, 2, 5)

     

    Section 10.8: Determinants
    ::第10.8节:决定因素

    1. 2
    2. -27
    3. -4
    4. 1
    5. -22
    6. -9
    7. -89
    8. 294
    9. 8
    10. -186
    11. -56
    12. 88
    13. 124
    14. 176
    15. Only square matrices have determinants.
      ::只有方格矩阵有决定因素。
    16. If the determinant is zero, then the rows are not linearly independent.
      ::如果决定因素为零,则行不线性独立。
    17. No, they are not collinear. Area = 21.5
      ::不,它们不是圆线,面积=21.5。
    18. No, they are not collinear. Area = 112.5
      ::不,它们不是圆线,面积=112.5
    19. No, they are not collinear. Area = 35
      ::不,它们不是圆线,面积=35

     

    Section 10.9: Cramer's Rule
    ::第10.9节:

    1. (-3, 4)
    2. (1, 6)
    3. There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
      ::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。
    4. (3, 2)
    5. There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
      ::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。
    6. x = 1  
      ::x=1 x=1
    7. y = 1  
      ::y=1 y=1
    8. z = 3  
      ::z=3 z=3
    9. x = 2  
      ::x=2x=2
    10. y = 2  
      ::y=2 y=2
    11. z = 2  
      ::z=2 z=2
    12. There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
      ::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。
    13. (-4, 5, 3)
    14. (1, 6, 8)
    15. (-3, 2, 5)
    16. Look at the other relevant determinants for Cramer's Rule. If they are also zero, then the system has infinite solutions. If they are non-zero, then the system has no solution.
      ::看看Cramer规则的其他相关决定因素。 如果它们也是零, 那么系统就有无限的解决方案。 如果它们不是零, 那么系统就没有解决方案 。
    17. Paperbacks: $8; Hardcover books: $15
      ::背页: 8美元; 硬封面书本: 15美元
    18. Corndogs: $2.75; Cotton candies: $1.75
      ::玉米条:2.75美元;棉花糖:1.75美元

     

    Section 10.10: Inverse Matrices
    ::第10.10节:逆矩阵

    1.  
      [ 3 2 - 5 2 - 1 2 ]  

    2. [ - 5 27 2 9 2 27 1 9 ]  

    3. [ 0 1 2 1 2 1 4 ]  

    4. [ 1 - 6 0 1 ]  

    5. [ 1 11 5 22 2 22 - 3 11 ]  
    6. No inverse
      ::无反反

    7. [ - 8 41 7 41 5 41 19 41 9 41 - 17 41 - 6 41 - 5 41 14 41 ]  

    8. [ - 3 294 34 294 5 294 18 294 - 8 294 68 294 27 294 - 12 294 - 45 294 ]  

    9. [ - 1 - 1 1 2 3 4 3 4 - 1 4 17 4 21 4 - 7 4 ]  

    10. [ 40 186 24 186 - 22 186 - 5 186 - 3 186 26 186 - 12 186 30 186 - 12 186 ]  

    11. [ 14 56 12 56 58 56 0 - 16 56 - 8 56 - 7 56 6 56 - 4 56 ]  

    12. [ 1 22 0 - 3 22 - 1 44 1 4 3 44 9 22 - 1 2 - 5 22 ]  
    13. Students should show that the matrix times itself equals the identity matrix.
      ::学生应表明矩阵本身与身份矩阵的比值。
    14. Students should show that the matrix times itself equals the identity matrix.
      ::学生应表明矩阵本身与身份矩阵的比值。
    15. A non-square matrix c anno t be multiplied on both sides by the same matrix because the order of the matrices would not work. Therefore, for a non-square matrix there cannot exist just one inverse matrix.
      ::非平方矩阵不能在双方以同一矩阵乘以同一矩阵,因为该矩阵的顺序不会起作用,因此,对于非平方矩阵,不可能只存在一个反向矩阵。

     

    Section 10.11: Partial Fraction Decomposition
    ::第10.11节:部分分数分数分解


    1. - 1 5 x 1 + 16 5 x + 4  
      ::-15x-1+165x+4

    2. - 7 9 x 1 3 x 2 + 7 9 x 3  
      ::-79x-13x2+79x-3

    3. - 1 5 x + 6 5 x 5  
      ::-15x+65x-5

    4. - 1 18 x + 19 54 x + 6 + 19 27 x 3  
      ::-118x+1954x+6+1927x-3

    5. - 1 2 x 2 + 7 4 x + 2 + 5 4 x  
      ::-12x2+74x+2+54x

    6. - 1 x + 1 x + 1 + 1 x 1  
      ::-1x+1x+1+1+1x-1

    7. 9 4 x 2 + 9 16 x + 55 16 x 4  
      ::94x2+916x+5516x-4

    8. 9 5 x + 7 + 1 5 x 3  
      ::95x+7+15x-3

    9. 4 3 x x 2 + 1 4 x 2 + 3 x  
      ::4-3x22+1-4x2+3x

    10. - 11 x 7 13 x 2 + 4 + 11 13 x 3  
      ::- 11x-713x2+4+1113x-3

    11. - x 13 5 x 2 + 1 + 5 3 x 2 + 14 45 x 3 1 9 x  
      ::--135x2+1+53x2+1445x-3-19x
    12. Students should verify that the partial fractions sum to the original function.
      ::学生应核实部分分数与原功能之和。
    13. Students should verify that the partial fractions sum to the original function.
      ::学生应核实部分分数与原功能之和。
    14. Students should verify that the partial fractions sum to the original function.
      ::学生应核实部分分数与原功能之和。
    15. Students should verify that the partial fractions sum to the original function.
      ::学生应核实部分分数与原功能之和。