16.10 答复-第10章:系统和矩阵
Section outline
-
Section 10.2: Systems of Two Equations and Two Unknowns
::第10.2节:两个等同和两个未知的系统- (-7, 3)
- (3, 8)
- (6, 10)
- (3, 9)
- (8, 2)
- (10, -10)
- (8, -5)
- (0, 5)
-
A system of equations has no solution if, when you are solving, you end up with a false statement like 0 = 2.
::等式系统无法解决问题,如果在解决时,最后出现0=2的虚假声明。 -
Answers will vary. Possible answers: If a system of equations has no solution, it means that the graphs do not intersect. For a system of two
variables
, the lines would be parallel.
::答案会有所不同。 可能的答案是: 如果一个方程式系统没有解答, 这意味着图形不会交叉。 对于由两个变量组成的系统, 线条将是平行的 。 -
A system where the two equations are equivalent (one is a multiple of the other) will produce an infinite number of solutions.
::两个方程式等同的系统(一个是另一个的倍数)将产生无限数量的解决方案。 - (2, 9)
- (7, 1)
-
99 and 51
::99和51 -
$68,750 in Company A, and $31,250 in Company B
::A公司68 750美元,B公司31 250美元 -
Clownfish cost $1.95, and goldfish cost $1.25.
::小丑鱼费用为1.95美元,金鱼费用为1.25美元。 -
26 and 9
::第26和9条 -
5 cappuccinos and 4 lattes
::5个卡布奇诺和4个拿铁
Section 10.3: Solving Linear Systems in Three Variables
::第10.3节:三个变量中的解决线性系统-
Yes
::是 是 -
No
::否 无 -
Yes
::是 是 -
Yes
::是 是 - (2, 7, 8)
- (-4, 1, 6)
- (5, 9, -2)
- (2, 1, 2)
- (- , 0, 0)
- (-7, 5, 4)
- (1, -4, 0)
-
No solution
::无解决方案 - (-1, 0, -1)
- (4, -2, 1)
-
::y=3 - x; z=0 -
Apples cost $2; onions cost $3; a basket of blueberries costs $4.
::A+O+B=92A+2O=102O+B=10苹果费用2美元;洋葱费用3美元;蓝莓篮子费用4美元。 - 735
-
$24,000 in the savings account; $11,000 in the time deposit; $7,000 in the bond
::储蓄账户24 000美元;定期存款11 000美元;保证金7 000美元 -
7 nickels, 6 dimes, and 12 quarters
::7个镍、6个零和12个季度 -
126 adult, 92 children, and 42 student tickets
::126名成人、92名儿童和42张学生票
Section 10.4: Matrices to Represent Data
::第10.4节:将数据表示数-
2 x 4
::2 x 4 -
2 x 2
::2 x 2 -
4 x 2
::4 x 2 4 x 2 -
4 x 3
::4 x 3 4 x 3 -
1 x 2
::1 x 2 -
Answers will vary.
::答案将各有不同。 -
Answers will vary.
::答案将各有不同。 -
A diagonal matrix
::对角矩阵 -
The rows represent the days of the week, and the columns represent the weeks of working.
::各行代表每周的天数,各栏代表工作周。 - $124
- $83
-
Fridays
::星期五 星期五 -
Thursdays
::星期四 星期四 -
No. The entries of matrices must be numbers, not words.
::否。矩阵条目必须是数字,而不是单词。
Section 10.5: Matrix Algebra
::第10.5节:矩阵体代数-
Not possible—you can't multiply a 2 x 3 matrix by a 2 x 2 matrix.
::不可能—— 您不能将 2 x 3 矩阵乘以 2 x 2 矩阵 。 -
Not possible—you can't multiply a 2 x 3 matrix by a 2 x 2 matrix.
::不可能—— 您不能将 2 x 3 矩阵乘以 2 x 2 矩阵 。 -
They both equal
.
::两者相等[52407350]。 -
They both equal
.
::两者相等[18122718]。 -
Answers will vary.
::答案将各有不同。 -
Friday: $1,019.25; Saturday: $1,295.25; Sunday: $857.75. Total: $3,172.25
::星期五:1 019.25美元;星期六:1 295.25美元;星期日:857.75美元。
Section 10.6: Row Operations and Row Echelon Forms
::第10.6节:行操作和行梯表-
Answers will vary.
::答案将各有不同。 -
Answers will vary.
::答案将各有不同。 -
Add a multiple of one row to another row; scale a row by multiplying through by a non-zero constant; swap two rows.
::将一行的倍数加到另一行;以非零常数乘以一行;交换两行。 -
The rows are linearly independent.
::各行是线性独立的。 -
Answers will vary.
::答案将各有不同。 -
The rows are linearly independent because reduced row echelon form is the identity matrix.
::各行是线性独立的,因为缩小的行梯层表是身份矩阵。 -
Answers will vary.
::答案将各有不同。 -
The rows are linearly independent because reduced row echelon form is the identity matrix.
::各行是线性独立的,因为缩小的行梯层表是身份矩阵。 -
Answers will vary.
::答案将各有不同。 -
Reduced row echelon form is
. Because there are no zero-only rows, the rows of the original matrix were linearly independent.
::缩排梯层表为[1200010010001],由于没有零单行,原始矩阵的行线性独立。 -
Answers will vary.
::答案将各有不同。 -
Reduced row echelon form is
. The rows of matrix D were not linearly independent.
::减少的排梯表为[100100]0. 矩阵D各行没有线性独立。 -
Answers will vary.
::答案将各有不同。 -
Reduced row echelon form is
. The rows of matrix E were not linearly independent.
::缩排梯层表为[10012000],表格E各行并非线性独立。 -
Answers will vary.
::答案将各有不同。 -
The rows are linearly independent because reduced row echelon form is the identity matrix.
::各行是线性独立的,因为缩小的行梯层表是身份矩阵。
Section 10.7: Augmented Matrices
::第10.7节:增加入学人数- (-3, 4)
- (1, 6)
-
Infinite number of solutions
::无限数的解决方案 - (3, 2)
-
No solution. The lines are parallel and do not intersect.
::否。 线条是平行的, 不交叉 。 - (1, 4, 6)
- (-3, 1, 5)
- (2, 5, 3)
-
Infinite number of solutions
::无限数的解决方案 - (3, 2, 8)
- (5, -1, 2)
-
No solution. If you multiply
by 2 and add it to
, you end up with 0 = 13. Therefore, no solution exists.
::否解决方案。如果将R1乘以 2 乘以 2 并添加到 R3, 最终结果为 0 = 13, 因此不存在解决方案 。 - (-4, 5, 3)
- (1, 6, 8)
- (-3, 2, 5)
Section 10.8: Determinants
::第10.8节:决定因素- 2
- -27
- -4
- 1
- -22
- -9
- -89
- 294
- 8
- -186
- -56
- 88
- 124
- 176
-
Only square matrices have determinants.
::只有方格矩阵有决定因素。 -
If the determinant is zero, then the rows are not linearly independent.
::如果决定因素为零,则行不线性独立。 -
No, they are not collinear. Area = 21.5
::不,它们不是圆线,面积=21.5。 -
No, they are not collinear. Area = 112.5
::不,它们不是圆线,面积=112.5 -
No, they are not collinear. Area = 35
::不,它们不是圆线,面积=35
Section 10.9: Cramer's Rule
::第10.9节:- (-3, 4)
- (1, 6)
-
There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。 - (3, 2)
-
There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。 -
::x=1 x=1 -
::y=1 y=1 -
::z=3 z=3 -
::x=2x=2 -
::y=2 y=2 -
::z=2 z=2 -
There is not one solution because the determinant of the coefficient system is 0. The rows of the coefficient matrix are not linearly independent.
::没有一种解决办法,因为系数制度的决定因素是0。系数矩阵的行并非线性独立的。 - (-4, 5, 3)
- (1, 6, 8)
- (-3, 2, 5)
-
Look at the other relevant determinants for Cramer's Rule. If they are also zero, then the system has infinite solutions. If they are non-zero, then the system has no solution.
::看看Cramer规则的其他相关决定因素。 如果它们也是零, 那么系统就有无限的解决方案。 如果它们不是零, 那么系统就没有解决方案 。 -
Paperbacks: $8; Hardcover books: $15
::背页: 8美元; 硬封面书本: 15美元 -
Corndogs: $2.75; Cotton candies: $1.75
::玉米条:2.75美元;棉花糖:1.75美元
Section 10.10: Inverse Matrices
::第10.10节:逆矩阵-
-
-
-
-
-
No inverse
::无反反 -
-
-
-
-
-
-
Students should show that the matrix times itself equals the identity matrix.
::学生应表明矩阵本身与身份矩阵的比值。 -
Students should show that the matrix times itself equals the identity matrix.
::学生应表明矩阵本身与身份矩阵的比值。 -
A non-square matrix c
anno
t be multiplied on both sides by the same matrix because the order of the matrices would not work. Therefore, for a non-square matrix there cannot exist just one inverse matrix.
::非平方矩阵不能在双方以同一矩阵乘以同一矩阵,因为该矩阵的顺序不会起作用,因此,对于非平方矩阵,不可能只存在一个反向矩阵。
Section 10.11: Partial Fraction Decomposition
::第10.11节:部分分数分数分解-
::-15x-1+165x+4 -
::-79x-13x2+79x-3 -
::-15x+65x-5 -
::-118x+1954x+6+1927x-3 -
::-12x2+74x+2+54x -
::-1x+1x+1+1+1x-1 -
::94x2+916x+5516x-4 -
::95x+7+15x-3 -
::4-3x22+1-4x2+3x -
::- 11x-713x2+4+1113x-3 -
::--135x2+1+53x2+1445x-3-19x -
Students should verify that the partial fractions sum to the original function.
::学生应核实部分分数与原功能之和。 -
Students should verify that the partial fractions sum to the original function.
::学生应核实部分分数与原功能之和。 -
Students should verify that the partial fractions sum to the original function.
::学生应核实部分分数与原功能之和。 -
Students should verify that the partial fractions sum to the original function.
::学生应核实部分分数与原功能之和。