Section outline

  • Section 15.2: Limit Notation
    ::第15.2节:限制说明

    1. lim x 2 x 4 + 4 x 2 1 5 x 4 + 3 x + 9 = lim x - 2 x 4 + 4 x 2 1 5 x 4 + 3 x + 9 = 2 5  
      ::立方公尺xx2x4+4x2-15x4+3x3x+9=limx%-2x4+4x2-15x4+3x9=25
    2. lim x 8 x 3 + 4 x 2 1 2 x 3 + 4 x + 7 = lim x - 8 x 3 + 4 x 2 1 2 x 3 + 4 x + 7 = 4  
      ::8x3+4x2 - 12x3+4x+7=limx}=========================================================================================================================================================================================================================================================================================================================================================================================================================================== = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
    3. lim x x 2 + 2 x 3 3 5 x 3 + x + 4 = lim x - x 2 + 2 x 3 3 5 x 3 + x + 4 = 2 5  
      ::limxxx2+2x3 - 35x3+4=limx}==25=limx}=x2+2x3+353+x4=25
    4. lim x 4 x + 4 x 2 5 2 x 2 + 3 x + 3 = lim x - 4 x + 4 x 2 5 2 x 2 + 3 x + 3 = 2  
      ::立方公尺=2
    5. lim x 3 x 2 + 4 x 3 + 4 6 x 3 + 3 x 2 + 6 = lim x - 3 x 2 + 4 x 3 + 4 6 x 3 + 3 x 2 + 6 = 2 3  
      ::立方英寸3x2+4x3+46x3+3x2+6=limx}==============================================================================================================================================================================================================================
    6. lim x 3 2 x 2 + 1 = 19  
      ::limx% 32x2+1=19
    7. lim x - e x = 0  
      ::立方公尺=0
    8. lim x 1 x = 0  
      ::limx1x=0
    9. lim n n i = 1 ( 1 4 ) i = 1 3  
      ::立方厘米=1( 14) 立方公尺=13
    10. lim n n i = 1 1 i  does not exist
      ::limnni=11i 不存在
    11. lim n n i = 0 ( 1 2 ) i = 2  
      ::立方公尺=0( 12) i=2
    12. lim n n i = 1 9 10 i = 1  
      ::立方公尺=1910i=1
    13. The limit of  f ( x ) = 5 x 2 4 x + 1  as  x  approaches 0 is -4.
      ::f(x) = 5x2-4x+1 的限值,作为 x local 0 是 - 4 。
    14. The limit of  y = x 3 1 x 1  as  x  approaches 1 is 3.
      ::y=x3 - 1x-1 的极限值为 x 方法1 x 的极限值为 3 。
    15. Yes, it's possible as long as  a  does not equal positive or negative infinity. Number 6 is an example of this.
      ::是的,只要不等于正或负的无限度,这是可能的。6号就是一个例子。

     

    Section 15.3: Graphs to Find Limits
    ::第15.3节:确定限额的图表

    1. lim x - f ( x ) = 0  
      ::limx-f(x)=0
    2. lim x f ( x ) = D N E  
      ::limxf(x) = DNE
    3. lim x 2 f ( x ) = D N E  
      ::limx%2f(x) = DNE
    4. lim x 0 f ( x ) = 1  
      ::limx0f(x)=1
    5. f ( 0 ) = 2  
      ::f(0)=2
    6. f ( 2 ) = 6  
      ::f(2)=6
    7. lim x - g ( x ) = D N E  
      ::limx-g(x) = DNE
    8. lim x g ( x ) = 1  
      ::limxg( x)=1
    9. lim x 2 g ( x ) = - 2  
      ::limx%2g(x)=-2
    10. lim x 0 g ( x ) = D N E  
      ::limx0g(x) = DNE
    11. lim x 4 g ( x ) = 0  
      ::limx4g(x)=0
    12. g ( 0 ) = 2  
      ::g( 0)=2
    13. g ( 2 ) = 4  
      ::g(2)=4
    14. Answers vary.
      ::答案不尽相同。
    15. Answers vary.
      ::答案不尽相同。

     

    Section 15.4: Tables to Find Limits
    ::第15.4节:确定限额的表格

    1. 10
    2. -5
    3. DNE
      ::DNN DN DN
    4. 1 2 2 0.35355  
    5. DNE
      ::DNN DN DN
    6. 9
    7. -6
    8. 1 2 5 0.2236  
    9. 1 6  
    10. 5
    11. -6
    12. 1 4  
    13. 1 4  
    14. 2 15  
    15. DNE
      ::DNN DN DN

     

    Section 15.5: Substitution to Find Limits
    ::第15.5节:用以确定限额的替代

    1. 10
    2. -5
    3. -7
    4. - 1 5  
    5. 3
    6. 9
    7. -6
    8. - 1 3  
    9. 7
    10. 5
    11. -6
    12. DNE
      ::DNN DN DN
    13. 6
    14. 2 15  
    15. DNE
      ::DNN DN DN

     

    Section 15.6: Rationalization to Find Limits
    ::第15.6节:寻找限制的合理化

    1. 1 6  
    2. 1 4  
    3. 1 4  
    4. 1 2 3  
    5. 5 8  
    6. - 1 4  
    7. 1 2 7  
    8. 8
    9. 4 3  
    10. 1 6  
    11. 1 2  
    12. 2
    13. 64
    14. -144
    15. If the function is a rational expression with a square root somewhere, there is a good chance that rationalizing will help you to evaluate the limit.
      ::如果函数是某处带有平方根的合理表达式,那么理顺很有可能有助于您评估极限值。

     

    Section 15.7: Continuity
    ::第15.7节:连续性

    1. 1
    2. 1
    3. Yes
      ::是 是
    4. 11
    5. 11
    6. No, because  g ( - 2 ) 11 .
      ::不,因为g(-2)\\\\\\\\\\\\\\\\\\\\\\\\\\
    7. -3
    8. -3
    9. -2
    10. No, because h ( 0 ) - 3  
      ::否,因为 h(0) {________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    11. Answers vary. Any continuous interval that does not include 0 should work. 
      ::答复各有不同。任何连续间隔,如果不包括0,应该有效。
    12. Answers vary. Possible answer: [-1, 1].
      ::答复不尽相同,可能的答复是[-1,1]。
    13. Since  lim x - 2 3 x + 1 = - 5  and  lim x - 2 + - 2 x 1 = 3 ,  there is no value of  k  that makes the function continuous.
      ::由于 limx-2-3x+1=-5 和 limx-2+-2x-1=3, k 没有值使函数持续。
    14. 1
    15. -3

     

    Section 15.8: Intermediate and Extreme Value Theorems
    ::第15.8节:中间和极端价值理论

    1. f ( - 1 ) = cos ( - 1 ) 1 = - 0.4596  and  f ( 1 ) = cos ( 1 ) + 1 = 1.54 ;  therefore, there must exist a  c  such that  f ( c ) = 0  because  - 0.4596 < 0 < 1.54
      ::f(-1)=cos(-1)-1=-0.4596和f(1)=cos(1)+1=1.54;因此,必须存在f(c)=0的c,因为 -0.4596 <0<1.54。
    2. f ( 1 ) = l n ( 1 ) e - 1 1 = - 1.37  and  f ( 3 ) = l n ( 3 ) e - 3 1 = 0.4883 ;  therefore, there must exist a c  such that  f ( c ) = 0  because  - 1.37 < 0 < 0.4883 .
      ::f(1)=ln(1)-e-1-1=-1.37和f(3)=ln(3)-e-3-1=0.4883;因此,必须存在f(c)=0的c,因为-1.37 <0.4883。
    3. f ( 1 ) = 2 ( 1 ) 3 5 ( 1 ) 2 10 ( 1 ) + 5 = - 8  and  f ( 0 ) = 2 ( 0 ) 3 5 ( 0 ) 2 10 ( 0 ) + 5 = 5 ;  therefore, there must exist a c  such that  f ( c ) = 0  because  - 8 < 0 < 5 .
      ::f(1)=2(1)3-5(1)-2-10(1)+5=8和f(0)=2(0)3-5(0)2-10(0)+5=5;因此,必须存在f(c)=0,因为 -8 <0 <5)
    4. f ( x ) = x 3 x 1 . f ( 0 ) = - 1  and  f ( 2 ) = 5 ; therefore, there must exist a c  such that  f ( c ) = 0  because  - 1 < 0 < 5 .  
      ::f( x) =x3- x- 1. f( 0) =-1 和 f(2)= 5; 因此, 必须存在这样的 c, 因为 - 1 < 0 < 5 , f( c) = 0 。
    5. f ( - 2 ) = ( - 2 ) 2 cos ( - 2 ) = 4.4  and  f ( 0 ) = ( 0 ) 2 cos ( 0 ) = - 1 ;  therefore, there must exist a c  such that  f ( c ) = 0  because  - 1 < 0 < 4.4 .
      ::f( 2) = ( 2) 2 - cos( 2) = 4. 4 和 f( 0) = ( 0) 2 - cos( 0) =-1; 因此, 一定存在 f( c) = 0 因为 - 1 < 0 < 4. 4 。
    6. f ( x ) = x 5 2 x 3 2 . f ( 1 ) = - 3  and  f ( 2 ) = 14 ; therefore, there must exist a c  such that  f ( c ) = 0  because  - 3 < 0 < 14 .
      ::f(x) =x5-2x3-2. f(1)=-3 和 f(2)=14; 因此, 一定存在f(c)=0的 c, 因为 - 3 < 0 < 14 。
    7. f ( x ) = 3 x 2 + 4 x 11 . f ( 1 ) = - 4  and f ( 2 ) = 9 ; therefore, there must exist a c  such that  f ( c ) = 0  because  - 4 < 0 < 9 .
      ::f(x) = 3x2+4x- 11. f(1)= 4 和 f(2)= 9; 因此, 一定存在f(c)=0的 c, 因为 - 4 < 0 < 9 。
    8. f ( x ) = 5 x 4 6 x 2 1 . f ( 1 ) = - 2  and  f ( 2 ) = 55 ; therefore, there must exist a c  such that f ( c ) = 0  because  - 2 < 0 < 55 .
      ::f(x) = 5x4-6x2- 1. f(1)= 2 和 f(2)= 55; 因此, 必须存在 f(c) = 0 因为 - 2 < 0 < 55 。
    9. f ( x ) = 7 x 3 18 x 2 4 x + 1 . f ( - 1 ) = - 20  and  f ( 0 ) = 1 ; therefore, there must exist a c  such that  f ( c ) = 0  because  - 20 < 0 < 1 .
      ::f( x) = 7x3- 18x2- 4x+1. f(-1) =-20 和 f( 0)=1; 因此, 必须有 f( c) =0 的 c , 因为 -20 < 0 < 1 。
    10. f ( 1 ) = 1 3  and  f ( 2 ) = - 1 ;  therefore, there must exist a c  such that f ( c ) = 0  because  - 1 < 0 < 1 3 .
      ::f(1)=13和f(2)=1;因此,必须存在f(c)=0的c,因为 -1 <0 < 13。
    11. f ( - 1 ) = - 1  and f ( 0 ) = 1 4 ;  therefore, there must exist a c  such that  f ( c ) = 0  because  - 1 < 0 < 1 4 .
      ::f(-1) =-1 和 f( 0) = 14; 因此, 必须存在 f( c) = 0 因为 - 1 < 0 < 14 。
    12. False
      ::假假
    13. True
      ::真实
    14. True
      ::真实
    15. Functions must be continuous over given intervals in order for the theorems to apply.
      ::功能必须是连续的,间隔一定的时间间隔内才能适用定理。

     

    Section 15.9: Instantaneous Rate of Change
    ::第15.9节:即时变化率

    1. The slope appears to be 2.
      ::斜坡似乎为2。
    2. The limit is 2, which is the same as what the slope appeared to be in Number 1.
      ::限值是2, 与1号的斜坡相同。
    3. The slope appears to be 6. 
      ::斜坡似乎为6。
    4. The limit is 6, which is the same as what the slope appeared to be in Number 3. 
      ::限值是6, 与第3页的斜坡相同。
    5. The slope appears to be 3.
      ::斜坡似乎为3。
    6. The limit is 3, which is the same as what the slope appeared to be in Number 5.
      ::限值是3, 与5号山坡看起来相同。
    7. The slope appears to be 6.
      ::斜坡似乎为6。
    8. lim x 1 ( 2 x 3 1 1 x 1 )  
      ::limx%1( 2x3 - 1 - 1 - 1x- 1)
    9. The slope at 0 is 0. The slope at  π 2  is -1. The slope at  π  is 0. The slope at  3 π 2  is 1. The slope at  2 π  is 0. 

      ::0为0。% 2 的斜度为 - 1. = 0。% 2 的斜度为 1 。% 2 的斜度为 0 。% 2 的斜度为 1 。
    10. The derivative of the cosine function is the negative sine function.
      ::余弦函数的衍生物是负正弦函数。
    11. The slope is 2 at every point. The derivative of the function is  y = 2 .
      ::每个点的斜坡为 2。 函数的衍生值为 Y= 2 。
    12. Distance vs. Time

      Rate vs. Time

      ::距离对时间率对时间
    13.  A tangent line is a line that "just touches" a curve. The slope of the tangent line at a given point is the derivative of the function at that point.
      ::正切线是“ 碰触” 曲线的线条。 相切线的斜度在给定点是函数在那个点的衍生物 。
    14. Instantaneous rate of change is the speed at a given point. Speed is shown as slope in functions; therefore, the slope of the tangent line will be the speed or instantaneous rate of change at that point.
      ::瞬间变化速度是某一点的速度。速度以函数的斜度显示;因此,正切线的斜度将是该点的速率或瞬时变化速度。
    15. We can't calculate a slope with a denominator of 0, but we can use limits to find the limit of the slope as the denominator approaches 0. 
      ::我们无法计算一个分母为0的斜坡, 但我们可以用极限来找到斜坡的极限, 当分母接近0时。

     

    Section 15.10: Area Under a Curve
    ::第15.10节:曲线下区域

    1. 176
    2. 60
    3. 8.79
    4. 8.86
    5. -0.33
    6. -0.59
    7. -0.72
    8. The car is going at a constant speed of 25 mph for 3 hours, and then instantly starts going 65 mph for the next 2 hours.
      ::汽车在3小时内以25英里的恒定速度行驶, 3个小时, 然后在接下来的2个小时里, 立即开始开往65英里的行驶。
    9. 205 miles
      ::205英里
    10. The car accelerates steadily from 0 to 75 meters per second in the first 3 seconds, and then stays at 75 meters per second for the next 2 seconds.
      ::汽车在前3秒内从每秒0米稳步加速到75米,然后在接下来的2秒内停留在每秒75米。
    11. 262.5 feet
      ::262.5英尺
    12. The runner increases in speed from 0 feet per second to 16 feet per second, then slows back down to 0 feet per second.
      ::跑者的速度从每秒0英尺增加到每秒16英尺,然后减慢到每秒0英尺。
    13. The exact answer is  256 3 85.33 .
      ::确切答案是256385.33。
    14. Integrals are areas under a curve. They can be calculated by finding the sum of the areas of an infinite number of rectangles.  
      ::元件是曲线下的区域,可以通过找到无数矩形的区域的总和来计算。