Section outline

  • So far we have only learned about determinants when it came to discussing whether a matrix is invertible or not. Now, let's introduce the idea of a determinant more rigorously.
    ::到目前为止,我们只是在讨论矩阵是否不可置疑时才知道决定因素。 现在,让我们更严格地提出决定因素的概念。


     

    The determinant of an  n × n   dimensional matrix of the form  A = [ a i j ]  is the summation of the form 
    ::窗体 A=[aij] 的 nxn 维矩阵的决定因素是窗体的总和

    det ( A ) = n j = 1 ( 1 ) j + 1 a 1 j det ( A 1 j )
    ::det( A) =nj=1( 1) j+1a1jdet( A1j)

    The terms of the form
    ::形式 形式 条件

    C i j = ( 1 ) i + j det ( A i j )  are called cofactors
    ::Cij= (- 1) i+jdet (Aij) 被称为共构因素

    so another form of the determinant can be written as
    ::因此,另一种形式的决定因素可以写成:

    det ( A ) = n j = 1 a 1 j C 1 j
    ::det( A) =nj=1a1jC1j

    This is not just limited to cofactors of row 1, we can generalize the formal definition of the determinant to
    ::这不仅仅限于第1排的共同因素,我们可以将决定因素的正式定义概括到

    det ( A ) = n j = 1 ( 1 ) i + j a i j det ( A i j ) det ( A ) = n j = 1 C i j a i j
    ::det( A) =nj=1( 1) i+jaijdet( Aij) det( A) =nj=1Cijaij

    Let's try an example of this:
    ::让我们试一试这个例子:

    Calculate the determinant of
    ::计算

    A = [ 1 3 4 0 2 0 5 1 1 ]
    ::A=[13-4020-511]

    There are three ways to calculate this determinant so let's try each of them and prove we'll get the same result.
    ::有三种方法来计算这个决定因素 所以让我们试一下每一个 证明我们会得到同样的结果

    det ( A ) = det ( [ 1 3 4 0 2 0 5 1 1 ] ) det ( A ) = 1 det ( [ 2 0 1 1 ] ) 3 det ( [ 0 0 5 1 ] ) + ( 4 ) det ( [ 0 2 5 1 ] ) det ( A ) = 1 ( 2 ) 3 ( 0 ) + ( 4 ) ( 10 ) det ( A ) = 2 40 det ( A ) = 38
    ::de(A)=det([13-4020-511])det(A)=1det([2011])-3det([00-51])+(-4)det([02-51])det(A)=1(2)-3(0)+(-4)(4)(10)det(A)=2-40det(A)______________________________________________

    We can also solve this using the cofactors from the second row
    ::我们也可以用第二排的共生因素解决这个问题

    det ( A ) = det ( [ 1 3 4 0 2 0 5 1 1 ] ) det ( A ) = 0 det ( [ 3 4 1 1 ] ) + 2 det ( [ 1 4 5 1 ] ) + 0 det ( [ 1 3 5 1 ] ) det ( A ) = ( 0 ) ( 7 ) + 2 ( 19 ) + 0 ( 16 ) det ( A ) = 38
    ::de(A)=det([13-4020-511])det(A)=0det([3-411])+2det([1-4-51])+0det([13-51])det(A)=(0(7)+2(19)+0(16)det(A)____________________________________________________

    So we get the same result and let's then finally do this for the third row
    ::所以结果是一样的,我们最后为第三排做这个

    det ( A ) = [ 1 3 4 0 2 0 5 1 1 ] det ( A ) = 5 ( [ 3 4 2 0 ] ) 1 ( [ 1 4 0 0 ] ) 4 ( [ 1 3 0 2 ] ) det ( A ) = 5 ( 8 ) + 1 ( 0 ) + 2 det ( A ) = 38
    :sadA)=[13-4020-511]det(A)5([3-420])-1([1-400])-4([1302])det(A)5(8)+1(0)+2det(A)________________________________

    So we see that this all works out. Now, what we can see is that the second row is easiest to do because it has the most 0's. So as a general rule of thumb, find which row is easiest to do cofactors with and then use that row.
    ::因此,我们看到这一切都可行。现在,我们可以看到第二行最容易做,因为它有最多0的缩略图。因此,作为一般的拇指规则,找到哪个行最容易做共犯,然后用那行。


     

    Now, let's look at some other properties of the determinant.
    ::现在,让我们来看看其他的 决定因素的属性。

    Let's look at triangular matrices to start off.
    ::让我们先看三角矩阵。

    Let  A = [ 2 0 0 3 1 0 1 5 4 ]
    ::让我们A=[20031015-4]

    det ( A ) = det ( [ 2 0 0 3 1 0 1 5 4 ] ) det ( A ) = 2 det ( [ 1 0 5 4 ] ) 0 det ( [ 3 0 1 4 ] ) + 0 det ( [ 3 1 1 5 ] ) det ( A ) = 2 ( 4 ) det ( A ) = 8  
    ::de(A) = det([20031015-44] det(A) = 2det([105-4]) - 0det([301-4]) + 0det([3115] det(A) = 2(-4) det(A) 8

    We can actually see that the determinant of this lower triangular matrix is the product of the diagonals.
    ::实际上,我们可以看到,这种三角三角下方矩阵的决定因素是对角体的产物。

    Now, let's prove this generally for any type of triangular matrix:
    ::现在,让我们为任何类型的三角矩阵 证明一下:

    A = [ 0 0 A 13 0 A 22 A 23 A 31 A 32 A 33 ] det ( A ) = 0 det ( [ 0 A 22 A 31 A 32 ] ) 0 det ( [ 0 A 23 A 31 A 33 ] ) + A 13 det ( [ 0 A 22 A 31 A 32 ] ) det ( A ) = A 13 det ( [ 0 A 22 A 31 A 32 ] ) det ( A ) = A 13 ( 0 A 32 A 22 A 31 ) det ( A ) = A 13 A 22 A 31  
    ::A=[00A130A22A23A23A31A32A33]det(A)=0det([0A22A31A32])-0det([0A23A31A33])+A13det([0A22A31A32]))det(A)=A13det([0A22A31A32])det(A)=A13(0QA32-A22A31)det(A) @A13A22A31

    A = [ A 11 0 0 A 21 A 22 0 A 31 A 32 A 33 ] det ( A ) = det ( [ A 11 0 0 A 21 A 22 0 A 31 A 32 A 33 ] ) det ( A ) = A 11 [ A 22 0 A 32 A 33 ] + 0 + 0 det ( A ) = A 11 ( A 22 A 33 0 ) det ( A ) = A 11 A 22 A 33  
    ::A=[A1100A21A220A220A31A32A33]det(A)=det([A1100A21A220A220A31A32A33])det(A)=A11[A220A32A33]+00det(A)=A11(A22A33-0)det(A)=A11A22A33


    So for a right upper triangular matrix and a left upper triangular matrix we have that the determinants are both the product and the negative product of the determinant. 
    ::因此,右上三角矩阵和左上三角矩阵的决定因素既是决定因素的产物,也是其负面产物。

    Next, we follow with a similar proof for a lower right and lower left triangular matrix to get 
    ::接下来,我们用类似的证据 来证明右下右下左下三角矩阵

    A = [ A 11 A 12 A 13 0 A 22 A 23 0 0 A 33 ] det ( A ) = A 11 det ( [ A 22 A 23 0 A 33 ] ) A 12 det ( [ 0 A 23 0 A 33 ] ) + A 13 det ( [ 0 A 22 0 0 ] ) det ( A ) = A 11 ( A 22 A 33 0 A 23 ) A 12 ( 0 A 33 0 A 23 ) + A 13 ( 0 A 22 0 ) det ( A ) = A 11 A 22 A 33
    ::A=[A11A12A12A130A22A2300A33]det(A)=A11det[[A22A230A33])-A12det([0A230A33])+A13det([0A2200])det(A)=A11(A22A3-3-001A23)-A12(0A33-0A223)+A13(0-A220)dt(A)=A11A22A33)

    Now we'l go on to the next triangular matrix
    ::现在我们继续下一个三角矩阵

    A = [ A 11 A 12 A 13 A 21 A 22 0 A 31 0 0 ] det ( A ) = det ( [ A 11 A 12 A 13 A 21 A 22 0 A 31 0 0 ] ) det ( A ) = A 11 det ( [ A 22 0 0 0 ] ) A 12 det ( [ A 21 0 A 31 0 ] ) + A 13 det ( [ A 21 A 22 A 31 0 ] ) det ( A ) = 0 0 + A 13 ( 0 A 22 A 31 ) det ( A ) = A 13 A 22 A 31
    ::A=[A11A12A1313A21A220A3100]det(A)=det([A11A12A13A13A21A21A220A3100])det(A)=A11det[[A2000])-A12det([A210A310]))+A13det([[A21A22A310]))det(A)=0-0+A13(0-A22A31)det(A)_A13A22A31

    Now, that's look at one more property of determinants, multiplicative-ness and inverses.
    ::现在,这是再看一个决定因素的属性, 多重性和反向性。


     

    First, let's look at determinants of elementary matrices and determinants of powers and inverses of matrices.
    ::首先,让我们看看基本矩阵的决定因素, 以及权力的决定因素和矩阵的反面。

    The determinant of an elementary matrix times another matrix A is the product of the determinants, so if E  is an elementary matrix and
    ::基本矩阵的决定因素乘以另一个矩阵A是决定因素的产物,因此如果E是基本矩阵的话,

    A = [ A 11 A 12 A 21 A 22 ] det ( E A ) = det ( E ) det ( A )
    ::A=[A11A12A12A21A22]det(EA)=det(E)det(A)

    Now we can gather that
    ::现在我们可以收集到

    det ( A B ) = det ( A ) det ( B ) Because...    A = E 1 E 2 E n det ( E 1 E 2 E n B ) = det ( E 1 ) det ( E 2 ) det ( E n ) det ( B ) = det ( E 1 E 2 E n ) det ( B ) = det ( A ) det ( B )
    ::de( AB) = det( A) ded( B) 因为... A= E1E2 _Endet( E1E2 @EnB) = det( E1E2) dedt( E2) {det( E2) adt( B) = det( E1E2E) det( B) adt( B) ditt( B) = det( A) dedt( B)

    Similarly, for inverses
    ::同样,对于逆数

    A A 1 = I det ( A A 1 ) = det ( A ) det ( A 1 ) det ( A ) det ( A 1 ) = det ( I ) det ( A ) det ( A 1 ) = 1 det ( A ) = 1 det ( A 1 )
    ::A- 1 = Idet (A- 1) = det (A-1) det (A-1) det (A-1) det (A-1) det (A-1) det (A-1) det (A-1) det (A-1) idet (A-1) = 1det (A-1) = 1det (A-1)