Section outline

  • In this lesson we will learn about more relationships with matrices and their determinants.
    ::在这一教训中,我们将了解与矩阵及其决定因素的更多关系。


     

    • If the matrix  B  is constructed by adding a scalar multiple of one row of  A  to another row of  A  we get that  det ( A ) = det ( B )  
      • As an example of this we see that
        ::作为这方面的一个例子,我们看到:
      •   A = [ 1 2 3 1 ] B = [ 1 2 1 5 ]  
        ::A=[12-31]B=[12-15]
      • This is constructed by  2 R 1 + R 2 R 2  to get the second matrix
        ::这是由 2R1+R2QR2 构造的, 以获得第二个矩阵
      • det ( A ) = det ( [ 1 2 3 1 ] ) det ( A ) = 1 ( 1 ) 2 ( 3 ) = 1 ( 6 ) = 7 det ( B ) = det ( [ 1 2 1 5 ] ) det ( B ) = 5 ( 1 ) 2 ( 1 ) = 5 + 2 = 7 det ( A ) = det ( B )  
        ::de( A) =det( [12- 31] =det( A) =1(1)- (2- 3) =1- (-6) = 7det( B) =det( [12- 15) det( B) =5(1)- (-2) - 1) =5+2=7det( A) =det( B)

      ::如果矩阵B的构造方法是在另一行A中添加一行AA的斜体倍数,我们就会得到该 det(A)=det(B) 作为这方面的一个例子,我们看到A=[12-31]B=[12-15]B=[12-31]B=[12-1+R2-15],这是用 2R1+R2=(A)=det([12-31])det(A)=1-(1)-3)=1-(-6)=7det(B)=det([12-15])det(B)=5(1)-(2(-2)(-1)=5+2=7det(A)=det(B)

     

    • If the matrix  B  is constructed by swapping two rows of  A  then we get that  det ( A ) = det ( B )  
      • As an example let's show that
        ::举例来说,让我们来证明
      • A = [ 3 1 2 5 ] B = [ 2 5 3 1 ] det ( A ) = det ( [ 3 1 2 5 ] ) det ( A ) = 3 ( 5 ) ( 1 ) ( 2 ) det ( A ) = 15 2 det ( A ) = 13 det ( B ) = det ( [ 2 5 3 1 ] ) det ( B ) = 2 ( 1 ) 5 ( 3 ) det ( B ) = 2 15 det ( B ) = 13 det ( A ) = det ( B )  
        ::A=[3-1--25]B=[-253-1-1-1]det(A)=det([3-1-25])det([3-1-25])det(A)=-3(5)-(-1)(-2)(-2)det(A)=15-2det(A)=13det(B)=det([-253-1)det(B)(2-1)-5(3)det(B)=2-15det(B) 13det(A)\det(B)

      ::如果矩阵B是通过对 A 的两行进行交换而构造的,那么我们就可以获得 det( A) {%det( B) 作为例子,让我们以A=[ 3- 1- 25] B=[-253-1-1-1)det( A) =det ([ 3-1- 25]) det( A) =3(5)- (- 1) (A) = 15-2det( A) =13det( B) =det( [-253-1) det( B) =2- 15det( B) =2- 15det( B) {13det( A) =13-2det( B)

     

    •  Lastly, if  B  is constructed by multiplying one row of  A  by a scalar  c  we'll end up getting that  det ( A ) = 1 c det ( B )  or  det ( B ) = c det ( A )  
      • As an example, 
        ::例如,
      • A = [ 3 4 2 5 ] B = [ 9 12 2 5 ] det ( A ) = 3 ( 5 ) 2 ( 4 ) det ( A ) = 15 + 8 det ( A ) = 23 det ( B ) = 9 ( 5 ) 2 ( 12 ) det ( B ) = 45 + 24 det ( B ) = 69 det ( B ) = 3 det ( A ) det ( A ) = 1 3 det ( B )  
        ::A=[3-425]B=[9-1225]B=[9-1225]det(A)=[9-1225)det(A)=[3-1225)det(A)=[3-1225)det(A)=[15+8det(A)=(B)=23det(B)=(9)(5)-2(-2)-(-12)det(B)=45+24det(B)=69dt(B)=(A)det(A)det(A)=13det(B)
      • To get  B  multiply row 1 of  A  by 3
        ::获得 B 乘以 A 1 乘以 A 乘以 3

      ::最后,如果B的构造是乘以一行A乘以一行A乘以一个scalar c,我们最终将获得det(A)=1cdet(B)或det(B)=cdet(A)作为例子,A=[3-425,B=[9-1225,B=[9-1225,B=[A)=3(5)(A)=3(5)-2-4(2-4)det(A)=15+8det(A)=23dt(B)=9(5)-(2-(B)=45+24det(B)=69det(B)=3det(A)det(A)=13det(B) 乘A第一行x3

     

    • Let's look at another matrix property for determinants
      • Given a matrix  A  the  determinant of the transpose of it is equal to its determinant, in other words,  det ( A ) = det ( A T )

        ::相对于其决定因素,即det(A)=det(AT),即det(A)=det(AT)
      • Let's try and verify this for ourselves
        • A = [ 4 1 3 2 ] A T = [ 4 3 1 2 ] det ( A ) = ( 4 ) ( 2 ) 3 ( 1 ) det ( A ) = 8 3 det ( A ) = 11 det ( A T ) = 4 ( 2 ) 3 det ( A T ) = 11 det ( A ) = det ( A T )  
          ::A=[-4132]AT=[-4312]det(A)=(-4)(2)-3(1)det(A) 8-3det(A) 11det(AT) 4(2)-3det(AT) 11det(A) =det(AT)

        ::让我们尝试为我们自己验证A=[-4132]AT=[-4312]det(A)=(-4)(2)-3(1)det(A)8-3det(A)11det(AT)4(2)-3det(AT)11det(A)=(A)det(AT)
      • Now, let's try to prove it
        • To prove this let's look at the principal of mathematical induction. The principal of mathematical induction states that if the statement  "> P ( n )  is true at the base case of P ( 1 )  and then assuming  P ( k )  is true then if  P ( k + 1 )  is true then  "> P ( n )  is true for every integer.
          ::为了证明这一点,让我们看看数学感应的原理。数学感应的原理指出,如果语句PNo在P(1)的基本情况中是真实的,然后假设P(k)是真实的,那么,如果P(k+1)是真实的,那么PNo在每个整数中都是真实的。
        •  So, we know that this statement is true for a 1x1 matrix, so let's assume that this statement is true for a k  x k matrix
          ::因此,我们知道,对于1x1矩阵来说,这一声明是真实的,因此,让我们假设,对于 k x k 矩阵来说,这一声明是真实的。
        • In  A , the cofactor of  a 1 j  is the cofactor  a j 1  in  A T  so they have cofactor expansions which are equal because the cofactor expansion down rows of A is the cofactor expansion down the columns of the transpose of A.
          ::在A中,a1j的同源物是AT的同源物aj1,因此它们具有相等的同源物膨胀,因为A下行的同源物膨胀是A转基因柱下的同源物膨胀。
        • That, in actuality means that A and its transpose are equal so by induction we are done.
          ::这实际上意味着,通过上岗培训,A及其转换是平等的。

        ::现在,让我们来证明这一点。 让我们来证明一下数学感应的原理。 数学感应的原理指出, 如果语句 PNo 在P(1) 的基数中是真实的, 然后假设 P(k) 是真实的, 那么如果P( k+1) 是真实的, 那么PNo 在每个整数中都是真实的。 因此, 我们知道这个语句对 1x1 矩阵来说是真实的, 所以让我们假设这个语句对 k x k 矩阵在 A 中是真实的, a1j 的共构体是AT 的共构体 aj1, 所以它们具有等同的共构体扩展, 因为 A 行下方的共构体扩展是 A 转换的列下方的共构体扩展 。 实际上, A 和它的转体是等同的, 我们完成的感应。

      ::让我们查看其它决定因素的矩阵属性 。 矩阵 A 转换的决定因素等于其决定因素 。 换句话说, 换句话说, 校对(AT) 让我们尝试为我们自己验证 A=[- 4132]AT=[- 4312] 代(A) = (4) (2) - 3 (A) (2) - 3 (det) (2) - 3det(A) = 3det (AT) 4\ 4(2) - 3det (AT) 4\ 4 (2) - 3det (AT) 。 因此, 让我们试着证明这个声明对 k x\\\\\\ 11det (A) = adt(AT) 等于其决定因素 。 数学感官( AT) 让我们来证明这一点 。 数学感官( AT) 让我们来证明这一点。 数学感官egg 让我们来证明这个声明是真实的 。 数学感官No AT) AT atembortiquestrain is the real a developtional a cofacal a listrations.

    • Let's try out some new practice problems to see if we can apply these properties:
      • Prove that if  A  is an  n × n  matrix and it has the property that  A T A = I , where  I  equals the identity matrix then  det ( A ) = ± 1
        • To prove this we get that
          ::为了证明这一点,我们得到
        •   det ( A T A ) = det ( I ) det ( A T A ) = 1 det ( A T ) det ( A ) = 1 det ( A ) = det ( A T ) det ( A ) 2 = 1 det ( A ) = ± 1    
          • hence  det ( A ) = ± 1
            ::因此(A) @%1

          ::de(ATA) = det(I) det(AT) = 1det(AT) det(A) = 1det(A) = det(AT) det(A) 2 = 1det(A) = 1det(A) = 1 det(A) = 1 因而 det(A) = 1

        ::证明如果 A 是 nxn 矩阵, 并且它具有 ATA=I 的属性, 也就是我等同于身份矩阵的属性, 那么 det( A)\\\\ 1 来证明这一点, 我们得到的是 det( ATA) = det( I) dedet( AT) adet( A) = 1det( A) = 1det( A) = det( AT) ded( A) 2= 1det( A) = 1 dedet( A) 1 因而是 det( A)\\ 1

      ::让我们尝试一些新的实践问题, 看看我们是否可以应用这些属性 : 证明如果 A 是 nxn 矩阵, 并且它具有 ATA=I 的属性, 则我等于身份矩阵, 然后 det( A)\\\\\ 1 来证明我们得到了 det( ATA) =1det( AT) dedet( A) =1det( A) =1det( A) =det( AT) dedet( A) 2=1det( A) =1 dedet( A) 。

    •  
      • If
        ::如果(如果)
      •   A = [ 1 2 3 1 5 7 2 3 1 ] det ( A ) = 31 B = [ 1 8 3 1 5 17 2 3 1 ]  
        ::A=[1-23-157-231]det(A)=31B=[-183-1517-231]
      • Calculate  det ( B )
        • Look at this really closely, one can see that 2 times row two of matrix A added to row 1 and sent to row one creates matrix B. Hence, from our earlier rules we can gather that
          ::仔细看看这个,人们可以看到, 矩阵A的第2行2倍加在第1行, 并发送到第1行第1行, 创建了矩阵B。 因此,根据我们早期的规则,我们可以收集到
        • det ( B ) = det ( A ) det ( A ) = 31 det ( B ) = 31  
          ::de(B)=det(A)det(A)=31&det(B)=31

        ::计算 det( B) 仔细查看这个非常接近的值, 人们可以看到, 矩阵A 2 倍于 2 行 2 的 矩阵A 添加到 第 1 行, 并发送到 第 1 行 1 创建 矩阵 B 。 因此, 根据我们先前的规则, 我们可以看到 dt( B) = det( A) dedet( A) = 31&det( B) =31

      ::如果A=[1-23-157-157-231]det(A)=31B=[-183-1517-2311] 计算 det(B) , 计算 det(B) 仔细看, 人们可以看到, 矩阵A 2 行的2倍 2 的 矩阵A 添加到行1 , 并发送到行一 创建 矩阵 B。 因此, 根据我们先前的规则, 我们可以看到 det( B) =det( A) adet( A) = 31det( B) =31

    •  
      • Calculate
        ::计算计算
      •   det ( A B ) A = [ 0 5 1 3 5 2 1 2 7 ] B = [ 9 15 6 0 5 1 1 2 7 ]  
        • A = [ 0 5 1 3 5 2 1 2 7 ] B = [ 9 15 6 0 5 1 1 2 7 ] det ( A ) = 0 det ( [ 5 2 2 7 ] ) 5 det ( [ 3 2 1 7 ] ) + 1 det ( [ 3 5 1 2 ] ) det ( A ) = 0 ( 5 ( 7 ) 2 ( 2 ) ) 5 ( 3 ( 7 ) 2 ( 1 ) ) + 1 ( 3 ( 2 ) 5 ( 1 ) ) det ( A ) = 0 ( 35 4 ) 5 ( 21 2 ) + 1 ( 6 5 ) det ( A ) = 0 ( 39 ) 5 ( 19 ) + 1 ( 11 ) det ( A ) = 0 95 11 det ( A ) = 106  
          ::A=[051-352-212-7]B=[-9156-112-7]det(A)=0det([522-7])-5det([-321-1-7]))+1det([-321-7])+1det([[-3512])det([5-(7)-2(2))-(5)-(3-7)-2(1))+1(3(2)-5(1))-1(3(2)-5(1))det(A)=0(-35-4)-4)-5(21-2)+1(-6-5)det(A)=0(-39)-5(19)+1(-(11)det(A)=0-95-(A)_106
        • We can also see that from matrix B we have that rows one and two are swapped and then the new row one is multiplied by 3. Hence, we can gather that the determinant of B can be written as the product of the determinant of those elementary matrices times the determinant of matrix A
          ::我们还可以看到,从表B中我们可以看到,一行和二行被互换,然后新的一行乘以3。 因此,我们可以发现,B的决定因素可以写成是这些基本矩阵的决定因素乘以矩阵A的决定因素的产物。
        • det ( B ) = 3 det ( A ) det ( A B ) = det ( A ) det ( B ) det ( A ) ( 3 det ( A ) ) = 3 det ( A ) 2 det ( A ) = 106 det ( A B ) = 3 ( 106 ) 2 det ( A B ) = 33708  
          ::d(B) 3det(A) adt(AB) = det(A) det(B) det(A)(A) 3det(A) 3det(A) 3det(A) 2det(A) 106det(AB) 3(106) 2det(AB) 3*33708

        :sadA) = 0det([522-7])+1det([-351-1-7])+1det([-3512])+5(A)=[051-3(7)-2(2))-5(3-3(3-7)-2(1))+(3)-(2)-(2)-(3)-(5)-(5)-(A)=[051-35621-212-7-7-7)A=[051-321-2-7)-(5)B=[95605112-7-7)=[A)=0det([52-2-7])+5det([[-321-7])+1det([[[-3512]))+1det([[(A)=(5)-(5)-(5)d([(7))-(A)=(5)(A)+(7)=(5)(A)+(7)=(5(7)(A)=(5)(A) (A)b(B)b(t)-(4)-(B)-(B)t)-(4)-(4)A(A(4)A(4)A(A(4)=(A(4)A(4))A(A(B)=(A(B)=(4)A(B)=(A(B)=(A(4)=(B)()))(A(A(4)*(A(4)=(A(A(4)()))))(4)=(A(A(4)=(A(A()))))(A(A(A(A(A(4)))))))(A(A(A(A(4))))))(B)(A(A(A(B)))(B))(A(A(A(T)))))(A(A(A(A(A(T)=(A(4)))))))))(A(A(A(A(A(B)=(A(A(B)(T)(B))

      :sadA)+1det([-321-7])+1det(A)+1det([-321-7])+1det([-3512])+(A)=0(5-(7)-2(2))-5(3-3(3)-2(7)-2(1))+(3(2)-(5)-(A)=0-(106)-(35-2)4)de(2-2)-(2-2)-(4)de(2-2)+1(6)-5)-(5)(A)=0det([522-7]))-([[-3211-7])-5det([[[-321-7])+(5det([[3512]))+(5det([(A)=0-95-11))d([(3))))d(A)*(A(4)&(B(B)-(T)A(4)A(4)A(4)A(4)(B)-(B)T)(B(B)t)T)=(A(3)(A(A(A(4)=(D)=(A(D)(D)(D))(A(A(D)(T)(A(T)))(A(T)))(A(A(A(T))(A(A(B)=(A(B)(T)(B)))))(D(T)(A(A(T)(T)(D)=(A(D)=(A(T))))))(A(A(A(A(A(A(A(D))))(D)))))))))(A(A(D(T)(T)(B(A(A(T))))))))(A(A(A(A(T))))(A(A(A(A(T)(D(T)))(B))(B))(A(A(A(A(T)))(B)(A(A(T)(B)))