4.5 空
章节大纲
-
In this lecture we will learn about another type of vector space known as the null space of a matrix.
::在这次演讲中,我们将了解另一种类型的矢量空间,即矩阵空格的空格。
Definition: The Null Space (or the kernel) of a Matrix is the set of all vectors in such that given some matrix in the set
::定义:母体的内核空间(或内核)是Rn所有矢量的组合,因此Av0给定的 mmxn(R) 中的一些矩阵
To show this more concretely, let's say that is an m by n matrix and then the matrix-vector product becomes a vector and we have to solve for when that vector is 0. Take the example of
::要更具体地显示这一点,让我们假设 A 是一个 m 乘 n 矩阵和x {{{{{{{{{{{{{{{{{{{{{}}} 矩阵矢量产品变成向量,我们必须解决该向量是0时的向量。举个例子
::A=[2412]Then the matrix-vector product represented by some vector in the space can be represented here:
::然后空间R2中某些矢量所代表的矩阵矢量-矢量产品可以在这里代表:Here, you can see that this matrix spans a line in and all of the points labeled are the ones that map to zero.
::这里,您可以看到这个矩阵横跨 R2 的线条, 所有标记的点都是地图为零的点 。So you can see here that the null space of the matrix is just any vector of the form
::所以您可以看到,矩阵的空空格只是窗体的任意矢量 v[a-a2]。More formally, given the matrix , the null space of , denoted we get
::更正式的说,鉴于矩阵A=[2412],A的空域(指Null(A))
::努尔(A)
Let's look at another example:
::让我们看看另一个例子:Let
::让我们 A = [1247]Now, let's calculate the null space of A.
::现在,让我们计算一下A的空域
::Ax0[1247][x1x2]=[00] 下一步,让我们乘以矩阵和矢量并解析方程系统,产生
::x1+2x2=04x1+7x2=0Solving, we get the only solutions to this system of linear equations as .
::正在解析, 我们找到这个线性方程式系统的唯一解决方案 asx1=0 和 x2=0 。Hence,
::因此,Null(A)[00]}Visualizing the transformation geometrically, we get the following picture:
::从几何角度观察变形情况,我们得到以下图象:Here, we see that this matrix-vector product looks like it will span all of , because it is not just spanning a line. Recall that the only two options for a linear combination in is to either span a line or a plane or just a point. So for a matrix vector product that takes a vector in and maps it to another vector in we get that the null space either has dimension 0,1 or 2. This brings us to introduce a new concept, nullity.
::在这里,我们看到这个矩阵矢量产品看起来将覆盖所有R2, 因为它不仅横跨一条线。 回顾R2线性组合的唯一两个选项是横跨一条线条或一平面, 或仅仅是一个点。 所以对于在 R2 中将矢量带入一个矢量的矩阵矢量产品, 在 R2 中将其映射为另一个矢量的矩阵矢量, 我们得到的是空格空间有维度 0, 1 或 2 。 这让我们引入一个新的概念, 无效性 。
Nullity definition: The nullity of a matrix A is the dimension of the null space of a matrix.
::无效性定义:矩阵A的无效性是矩阵空格的空格。Let's look at a new example: Call and the matrix vector product is
::让我们看看一个新例子:呼叫A=[1326],矩阵矢量产品为Ax*[1326]}[x1x2]。So represents the linear combination of and , but because
::So Ax是[12]和[36]的线性组合,但由于From this we see that this matrix vector product is a line and we can prove it by visualizing it:
::从这一点可以看出,这种矩阵矢量产品是一条线,我们可以通过直观的描述来证明这一点:And we can see that every point that maps to 0 is of the form
::我们可以看到,地图到0的每一个点都是表c[-31],cRSo the null space is a line and has dimension 1.
::因此,空域是一条线,具有维度1。
::如果我们回顾一下我们早先使用矩阵的例子[1247],则空域中只有0个,因此空域的尺寸为0。
Rank nullity theorem:
::无效定理排序 :Given a matrix with n columns we can see that the rank of the matrix plus the nullity is the number of columns, in other words,
::根据带有n列的矩阵,我们可以看到,矩阵的等级加上无效性是列数,换句话说,where is the number of columns of
::dim(nul( A))+dim(col( A))=n, n是 A 列数的 n
Applications to the Invertible Matrix Theorem
::不可逆矩阵定理的应用- Applying any elementary row operation onto a matrix A does not change it's null space
::- 将任何基本行操作应用到矩阵A上,不会改变它的空格- If is any solution of and for a basis for the null space of A, then any solution of can be written as and conversely, any vector written this way for any scalars is a solution of .
::- 如果 x0 是 Axb 和 v1,v2, ,vr 为 A 无效空间的基础的任何解决方案, 那么任何 Axb 的解决方案都可以写成 xc1x1crxr , 反之, 任何 calars c1, cr 以这种方式写成的任何矢量, 则是 Axb 的解决方案 。
Let's watch a few videos to better understand the null space:
::让我们看几段影片, 以便更好地了解空域: