Section outline

  • In this lecture we will learn about another type of vector space known as the null space of a matrix.
    ::在这次演讲中,我们将了解另一种类型的矢量空间,即矩阵空格的空格。


    Definition: The Null Space (or the kernel) of a Matrix is the set of all vectors in  R n  such that  A v = 0  given some matrix in the set  M m × n ( R )
    ::定义:母体的内核空间(或内核)是Rn所有矢量的组合,因此Av0给定的 mmxn(R) 中的一些矩阵


    To show this more concretely, let's say that  A  is an m by n matrix and x R n then the matrix-vector product becomes a vector and we have to solve for when that vector is 0. Take the example of
    ::要更具体地显示这一点,让我们假设 A 是一个 m 乘 n 矩阵和x {{{{{{{{{{{{{{{{{{{{{}}} 矩阵矢量产品变成向量,我们必须解决该向量是0时的向量。举个例子

    A = [ 2 4 1 2 ]
    ::A=[2412]

    Then the matrix-vector product represented by some vector in the space  R 2  can be represented here:
    ::然后空间R2中某些矢量所代表的矩阵矢量-矢量产品可以在这里代表:

    Here, you can see that this matrix spans a line in  R 2  and all of the points labeled are the ones that map to zero.
    ::这里,您可以看到这个矩阵横跨 R2 的线条, 所有标记的点都是地图为零的点 。

    So you can see here that the null space of the matrix is just any vector of the form  v = [ a a 2 ]
    ::所以您可以看到,矩阵的空空格只是窗体的任意矢量 v[a-a2]。

    More formally, given the matrix  A = [ 2 4 1 2 ] , the null space of  A , denoted  N u l l ( A )  we get 
    ::更正式的说,鉴于矩阵A=[2412],A的空域(指Null(A))

    N u l l ( A ) = { v A v = 0 } = { v = [ a a 2 ] , a R }

    ::努尔(A)


     

    Let's look at another example:
    ::让我们看看另一个例子:

    Let  A = [ 1 2 4 7 ]
    ::让我们 A = [1247]

    Now, let's calculate the null space of A.
    ::现在,让我们计算一下A的空域

    A x = 0 [ 1 2 4 7 ] [ x 1 x 2 ] = [ 0 0 ]
    Next, let's multiply the matrix and vector and solve the system of equations, yielding
    ::Ax0[1247][x1x2]=[00] 下一步,让我们乘以矩阵和矢量并解析方程系统,产生

    x 1 + 2 x 2 = 0 4 x 1 + 7 x 2 = 0

    ::x1+2x2=04x1+7x2=0

    Solving, we get the only solutions to this system of linear equations as x 1 = 0  and  x 2 = 0 .
    ::正在解析, 我们找到这个线性方程式系统的唯一解决方案 asx1=0 和 x2=0 。

    Hence,  N u l l ( A ) = { [ 0 0 ] }
    ::因此,Null(A)[00]}

    Visualizing the transformation geometrically, we get the following picture:
    ::从几何角度观察变形情况,我们得到以下图象:

     

    Here, we see that this matrix-vector product looks like it will span all of  R 2 , because it is not just spanning a line. Recall that the only two options for a linear combination in  R 2  is to either span a line or a plane or just a point. So for a matrix vector product that takes a vector in  R 2 and maps it to another vector in  R 2  we get that the null space either has dimension 0,1 or 2. This brings us to introduce a new concept, nullity. 
    ::在这里,我们看到这个矩阵矢量产品看起来将覆盖所有R2, 因为它不仅横跨一条线。 回顾R2线性组合的唯一两个选项是横跨一条线条或一平面, 或仅仅是一个点。 所以对于在 R2 中将矢量带入一个矢量的矩阵矢量产品, 在 R2 中将其映射为另一个矢量的矩阵矢量, 我们得到的是空格空间有维度 0, 1 或 2 。 这让我们引入一个新的概念, 无效性 。

     


     

    Nullity definition: The nullity of a matrix A is the dimension of the null space of a matrix. 
    ::无效性定义:矩阵A的无效性是矩阵空格的空格。

    Let's look at a new example: Call  A = [ 1 3 2 6 ]  and the matrix vector product is  A x = [ 1 3 2 6 ] [ x 1 x 2 ]
    ::让我们看看一个新例子:呼叫A=[1326],矩阵矢量产品为Ax*[1326]}[x1x2]。

    So  A x  represents the linear combination of  [ 1 2 ]  and  [ 3 6 ] , but because 
    ::So Ax是[12]和[36]的线性组合,但由于

    [ 3 6 ] = 3 [ 1 2 ]

    From this we see that this matrix vector product is a line and we can prove it by visualizing it:
    ::从这一点可以看出,这种矩阵矢量产品是一条线,我们可以通过直观的描述来证明这一点:

    And we can see that every point that maps to 0 is of the form  c [ 3 1 ] , c R
    ::我们可以看到,地图到0的每一个点都是表c[-31],cR

    So the null space is a line and has dimension 1.
    ::因此,空域是一条线,具有维度1。

    If we look back at our earlier example with the matrix  [ 1 2 4 7 ]  only has 0 in the null space so the dimension of the null space is 0.
    ::如果我们回顾一下我们早先使用矩阵的例子[1247],则空域中只有0个,因此空域的尺寸为0。


    Rank nullity theorem:
    ::无效定理排序 :

    Given a matrix with n columns we can see that the rank of the matrix plus the nullity is the number of columns, in other words,
    ::根据带有n列的矩阵,我们可以看到,矩阵的等级加上无效性是列数,换句话说,

    dim ( nul ( A ) ) + dim ( col ( A ) ) = n  where  n  is the number of columns of  A
    ::dim(nul( A))+dim(col( A))=n, n是 A 列数的 n


    Applications to the Invertible Matrix Theorem
    ::不可逆矩阵定理的应用

    - Applying any elementary row operation onto a matrix A does not change it's null space
    ::- 将任何基本行操作应用到矩阵A上,不会改变它的空格

    - If  x 0   is any solution of  A x = b   and  v 1 , v 2 , , v r   for a basis for the null space of A, then any solution of  A x = b   can be written as  x = c 1 x 1 + + c r x r   and conversely, any vector written this way for any scalars  c 1 , , c r   is a solution of  A x = b .
    ::- 如果 x0 是 Axb 和 v1,v2, ,vr 为 A 无效空间的基础的任何解决方案, 那么任何 Axb 的解决方案都可以写成 xc1x1crxr , 反之, 任何 calars c1, cr 以这种方式写成的任何矢量, 则是 Axb 的解决方案 。


    Let's watch a few videos to better understand the null space:
    ::让我们看几段影片, 以便更好地了解空域: