Section outline

  • In this lesson we are going to be learning about sets of orthogonal vectors and their properties.
    ::在这个教训中,我们将学习 几组正向矢量及其属性。


     

    Definition: A set of vectors is a set of orthogonal vectors if and only if each vector is orthogonal with one another.
    ::定义:一组矢量是指一套正对角矢量,条件是且仅在每个矢量相互对齐的情况下。

    Theorem: If  S  is a set of orthogonal vectors in  R n , then  S  is linearly independent and thus can be treated as a basis for the subspace spanned by those orthogonal vectors.
    ::论理: 如果 S 是 Rn 中一组正向矢量, 那么 S 是线性独立的, 因此可以作为这些正向矢量所跨越的子空间的基础 。

    As an exercise try and prove this theorem on your own.
    ::作为锻炼 尝试证明这个理论 你自己的。


     

    Definition: An orthogonal basis for a subspace  W  of  R n  is a basis for  W  which also happens to be an orthogonal set.
    ::定义:Rn 子空间W的正弦基是W的基础,它也恰好是一个正弦基。

     

    What's especially nice about orthogonal basis is we can exploit their properties to find an easy way to calculate the coefficients of vectors when taking a linear combination of them.
    ::最有趣的是,我们可以利用它们的特性 来找到一个简单的方法 来计算矢量的系数, 用它们的线性组合来计算。

     


     

    Theorem: If we have an orthogonal basis of the form  { u 1 , u 2 , , u n }  then given an element that is in the subspace we can write 
    ::定理: 如果我们对表 {u1, u2, , , , } 的正对线基, 那么给定一个元素, 元素在子空间中, 我们可以写入


    v = ( v u 1 u 1 u 1 ) u 1 + + ( v u n u n u n ) u n
    ::

    Al though this theorem is a bit harder to prove, I have faith that you can prove it on your own so try and prove it as an exercise.
    ::虽然这个定理比较难证明 但我相信你可以自己证明 所以试着把它证明为一种练习


    Let's now look at some examples of orthogonal basis :
    ::让我们看看一些垂直基础的例子:

    Let S be the set spanned by the vectors
    ::让 S 成为矢量设定的宽度

      [ 3 1 1 ] , [ 1 2 1 ] , [ 1 2 2 7 2 ]

    We verify that this is an orthogonal basis by seeing that 
    ::我们通过看到这一点来核实这是否是一个正正向基础。

    ( 3 , 1 , 1 ) ( 1 , 2 , 1 ) = 0 ( 3 , 1 , 1 ) ( 1 / 2 , 2 , 7 / 2 ) = 0 ( 1 , 2 , 1 ) ( 1 / 2 , 2 , 7 / 2 ) = 0

    Let's  label these vectors  u 1 , u 2 , u 3
    ::让我们标记这些矢量 u1,u2,u3

    Now, let's say we want to find the vector  v = [ 6 1 8 ]  as a linear combination of the top three vectors. We  continue as follows:
    ::假设我们想找到矢量 v[61-8] 作为前三个矢量的线性组合。 我们继续如下:

    v u 1 = 11 v u 2 = 12 v u 3 = 33 u 1 u 1 = 11 u 2 u 2 = 6 u 3 u 3 = 33 2 v = u 1 2 u 2 2 u 3
    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}

    One can easily verify that the final result is true just by inspection.
    ::人们可以很容易地通过检查来核实最终结果是否属实。


    Now, we'll introduce the notion of orthogonal projections.
    ::现在,我们来介绍 垂直预测的概念。

    Here, we define the vector 
    ::在此, 我们定义矢量

    y ^ = y u u u u
    ::你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你

    as the orthogonal projection of  y  onto  u .
    ::作为 y 的正向投影到 u 的 y 垂直投影 。

    Now, try and make your own graphical interpretation of this:
    ::现在,试着用你自己的图形来解释这个:

     

    This is essentially the projection of a vector onto another as we discussed in lesson 1.6. Go back to review more of  the properties of projections.
    ::这基本上是我们在第1.6项中所讨论的向量投射到另一个向量。 回去审查更多的预测属性。

    This is also what the coefficients look like in the equation for a vector in the span of vectors in an orthogonal basis.
    ::这也是矢量方程中的矢量在矢量间距的正方程中的系数。

    Here's a theorem to consider:
    ::这里有一个理论要考虑:

    Let  W  be a subspace of  R n  and  y R n  and  y ^ = proj W ( y )  then  y ^  is the point in W closest to  y   for every single  v W not equal to  y ^  .
    ::让 W 成为 Rn 和 y 和 y 和 projW Yes 的子空间, 那么y 将是每个 v 和 y 和 y 最接近 y 的点 。

    Again, try and think of a new visual interpretation of this.  
    ::再一次,试着想出一个新的视觉解释。


     

    Now look at these videos and these links to help solidify your understanding of orthogonal projections and orthogonal sets of vectors.
    ::现在看看这些视频和这些链接, 帮助巩固您对正向投影和正向矢量组合的理解。