7.2 一套正弦矢量
章节大纲
-
In this lesson we are going to be learning about sets of orthogonal vectors and their properties.
::在这个教训中,我们将学习 几组正向矢量及其属性。
Definition: A set of vectors is a set of orthogonal vectors if and only if each vector is orthogonal with one another.
::定义:一组矢量是指一套正对角矢量,条件是且仅在每个矢量相互对齐的情况下。Theorem: If is a set of orthogonal vectors in , then is linearly independent and thus can be treated as a basis for the subspace spanned by those orthogonal vectors.
::论理: 如果 S 是 Rn 中一组正向矢量, 那么 S 是线性独立的, 因此可以作为这些正向矢量所跨越的子空间的基础 。As an exercise try and prove this theorem on your own.
::作为锻炼 尝试证明这个理论 你自己的。
Definition: An orthogonal basis for a subspace is a basis for which also happens to be an orthogonal set.
::定义:Rn 子空间W的正弦基是W的基础,它也恰好是一个正弦基。What's especially nice about orthogonal basis is we can exploit their properties to find an easy way to calculate the coefficients of vectors when taking a linear combination of them.
::最有趣的是,我们可以利用它们的特性 来找到一个简单的方法 来计算矢量的系数, 用它们的线性组合来计算。
Theorem: If we have an orthogonal basis of the form then given an element that is in the subspace we can write
::定理: 如果我们对表 {u1, u2, , , , } 的正对线基, 那么给定一个元素, 元素在子空间中, 我们可以写入
::Al though this theorem is a bit harder to prove, I have faith that you can prove it on your own so try and prove it as an exercise.
::虽然这个定理比较难证明 但我相信你可以自己证明 所以试着把它证明为一种练习
Let's now look at some examples of orthogonal basis :
::让我们看看一些垂直基础的例子:Let S be the set spanned by the vectors
::让 S 成为矢量设定的宽度We verify that this is an orthogonal basis by seeing that
::我们通过看到这一点来核实这是否是一个正正向基础。Let's label these vectors
::让我们标记这些矢量 u1,u2,u3Now, let's say we want to find the vector as a linear combination of the top three vectors. We continue as follows:
::假设我们想找到矢量 v[61-8] 作为前三个矢量的线性组合。 我们继续如下:
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}One can easily verify that the final result is true just by inspection.
::人们可以很容易地通过检查来核实最终结果是否属实。
Now, we'll introduce the notion of orthogonal projections.
::现在,我们来介绍 垂直预测的概念。Here, we define the vector
::在此, 我们定义矢量
::你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你as the orthogonal projection of
::作为 y 的正向投影到 u 的 y 垂直投影 。Now, try and make your own graphical interpretation of this:
::现在,试着用你自己的图形来解释这个:This is essentially the projection of a vector onto another as we discussed in lesson 1.6. Go back to review more of the properties of projections.
::这基本上是我们在第1.6项中所讨论的向量投射到另一个向量。 回去审查更多的预测属性。This is also what the coefficients look like in the equation for a vector in the span of vectors in an orthogonal basis.
::这也是矢量方程中的矢量在矢量间距的正方程中的系数。Here's a theorem to consider:
::这里有一个理论要考虑:Let be a subspace of and and then is the point in W closest to for every single not equal to .
::让 W 成为 Rn 和 y 和 y 和 projW的子空间, 那么y 将是每个 v 和 y 和 y 最接近 y 的点 。
Again, try and think of a new visual interpretation of this.
::再一次,试着想出一个新的视觉解释。
Now look at these videos and these links to help solidify your understanding of orthogonal projections and orthogonal sets of vectors.
::现在看看这些视频和这些链接, 帮助巩固您对正向投影和正向矢量组合的理解。