Section outline

  • The Purpose of this Lesson
    ::本课程的目的

    In this lesson,  you will explore the square root function in the context of inverse relations. You'll graph transformed square root functions and solve .
    ::在此教训中, 您将在反向关系中探索平方根函数。 您将绘制正方根函数的变形图并解决 。

    Introduction: T he Inverse of the Quadratic F u nction
    ::导言:Quadratic 函数的反面

    Work it Out
    ::工作出来

    Graph the function  f ( x ) = x 2 .  Find the inverse. Solve it for  y .  Graph it. Graph the line y = x .  Compare the inverse of  f ( x )  with the original. What is the domain and range of the original? What is the domain and range of the inverse? What do you observe?
    ::函数 f( x) =x2 的图解。 查找反向 。 为 y 解决它。 绘制线条 y=x 。 比较 f( x) 与原始的反义 。 原始的域和范围是什么? 反向的域和范围是什么? 您观察了什么 ?


    Activity 1 : The Square Root Function
    ::活动1: " 平根功能 "

    In the last problem, you saw that the equations  y = x 2  and  y = ± x  are inverse relations. 
    ::在最后一个问题中,你看到 y=x2和y=x是反向关系。

    Example 1-1
    ::例1-1

    y = ± x  is not a function . Why not?  y = x  is a function. How do you know? What  is its domain and range?
    ::yx 不是函数。 为什么不? y=x是一个函数。 你怎么知道? 它的域和范围是什么?

     

    Solution:    The graph of  y = ± x  shows us that there is an infinite number of  x values that return more than one  y  value. This doesn't meet our definition of a function. A function is a relation between two sets of numbers, the domain, and range, such that for each  x  value in the domain there is only one  y  value in the range. Substituting values for  x , or the vertical line test for the graph, show that  y = ± x  does not meet the definition of a function.
    ::解析度 : yx 的图形向我们显示, 返回一个 y 值的 x 值是无限的。 这不符合我们对函数的定义。 函数是两组数字之间的关系, 即域和范围, 因此对于域内的每个 x 值来说, 区域里只有一个 y 值。 替换 x 的值, 或图形的垂直线测试, 显示 yx 不符合函数的定义 。

    lesson content

    The equation y = plus or minus the square root of x is not a function, but y = the square root of x is. Why?
    ::公式 y = + 或 减去 x 的平方根不是函数,而是 y = x 的平方根是。 为什么?

    By contrast,  y = x  is a function. It passes the vertical line test. The domain for  y = x  is  [ 0 , ) .  The range is  [ 0 , ) .
    ::相对而言, Y=x 是一个函数。它通过垂直线测试。y=x 的域为 [0,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Y\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    lesson content
    The equation y = plus or minus the square root of x is not a function, but y = the square root of x is. Why?

    Interactive
    ::交互式互动

    We can transform the square root function using the same parameters  that we used  for quadratic functions. Use the interactive below to investigate how a ,   h ,  and k  affect the square root function  y = x .
    ::我们可以使用用于二次函数的相同参数来转换平方根函数。 使用下面的交互功能来调查a、 h和 k如何影响平方根函数 y=x 。

     

    INTERACTIVE
    Transforming Square Root Functions
    minimize icon
    • Move the red, blue, and green points to change the stretch, horizontal, and vertical shifts of the square root function.
      ::移动红色、蓝色和绿色点以改变平方根函数的伸缩、水平和垂直移动。
    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     

     

     

    Work it Out
    ::工作出来

    Transform the square root function  f ( x ) = x  according to each set of instructions below. Call the result after each transformation h ( x ) .  Write the equation for each result.  Sketch the graph of each. Give the domain and range of each. Based on the graph, state if the equation  h ( x ) = 2  has a solution, and why or why not. Do not solve the equation.
    ::根函数 f( x) =x 根据以下每组指令进行转换。 在每次转换 h( x) 后调出结果。 写入每个结果的方程。 绘制每个结果的图形。 给出每个结果的域和范围。 根据图形, 显示公式 h( x) =2 是否有解决方案, 以及为什么或为什么没有。 请不要解析方程 。

    1. Shift 5 vertically .
      ::垂直移动 5 。
    2. Shift 3 horizontally .
      ::水平上移移移 3 。
    3. Shift 5 vertically and 3 horizontally.
      ::垂直移5和横向移3。
    4. Stretch by a factor of 2.
      ::伸展乘以 2 乘以 2 。
    5. Shift -3 vertically.
      ::- 垂直移动 - 垂直移动 - 垂直移动 - Shift - 3 toird - 3 toird
    6. Stretch by a factor of negative 1.
      ::以负1系数拉伸

    Activity 2: Solving Square Root Equations
    ::活动2:解决平方根等

    Example 2-1
    ::例2-1

    In the last problem, there were several cases when the equation  h ( x ) = 2  did not have a solution. The example below shows the process for solving equations with square roots.  Although this process will always result in a numerical answer,  the answer is not always a valid solution to the equation.
    ::在最后一个问题中,有几种情况是公式h(x)=2没有解决办法。下面的例子显示了用正方根解析方程式的过程。虽然这一过程总是得出数字答案,但答案并不总是对等方程式有效的解决办法。

    Equation Explanation 3 x 2 + 7 = 19 Given equation. 3 x 2 = 12 Subtracting. x 2 = 4 Dividing. x 2 = 16 Squaring both sides. (Squaring is the inverse of square rooting.) x = 18 Adding. 3 18 2 + 7 = 19 Checking answer by substituting to see if it's a solution. 3 16 + 7 = 19 3 ( 4 ) + 7 = 19 12 + 7 = 19 5 = 19 This statement is false. 18 is not a solution. There is no solution.

    ::EquationExplantation- 3x-2+7=19 给定方程式。- 3x-2=12 减序. x-24Dividide.x-2=16S 双方对齐。 (对齐是平方根的反方。)x=18Add.-318-2+7=19 通过替换检查答案,看它是否是一个解决方案。- 316+7=19-3(4)=19- 12+7=19-5=19=19 本语句是虚假的。 18 不是一个解决方案, 没有解决方案 。

    Graphing  y = 3 x 2 + 7   and   y = 19  shows no intersection , which means the equation  3 x 2 + 7 = 19  has no solution. Look at the transition from the  third to  the fourth  line above. At that step, negative 4 was squared. This introduced an  extraneous solution . An extraneous solution is a solution that is not valid. 
    ::图形 y3x-2+7 和 y=19 显示没有交叉点, 这意味着方程式 3x-2+7=19 没有解决方案。 看看上面第三行向第四行的过渡情况。 在此步骤中, 负 4 平方 。 这引入了一个不相干解决方案 。 一个不相干解决方案是无效的解决方案 。

     

     

    Work it Out
    ::工作出来

    1. Below are several square root equations. Solve each by isolating the expression involving a square root, then squaring both sides to finish solving.  Substitute each answer in the original equation to check if it is actually a solution. In the cases where the answer was not a solution, explain the absence of a solution by graphing the function on the left side of the equation. 
      ::下面是几个平方根方程式。 通过分离涉及平方根的表达式来解决每一个问题, 然后将双方隔开以完成解答 。 在原始方程式中替换每个答案以检查它是否真正是一个解决方案 。 在答案不是解决方案的情况下, 请用方程式左侧的图解来解释没有解决方案 。

    a. x = 5 b. a + 7 = 1 c. x = 4 d. 2 x = 6 e. 3 x = 12 f. x 4 = 5 g. x + 1 + 4 = 5 h. 3 x 1 + 5 = 7 i. x + 4 = 0
    ::a.xxxxxxxxxxx+4=5h.3x-1+5=7i.x+4=0

      Solving Equations Involving Square Roots
    ::涉及 " 平根 " 的溶解平方

    Isolate the expression involving the square root.
    ::分离涉及平方根的表达式 。

    Square both sides, then continue solving.
    ::双方平方,然后继续解决。

    Check for extraneous solutions by substituting your answer into the original equation.
    ::将答案替换为原始方程, 以检查不相干的解决办法 。

    1. Solve each of the following equations by isolating the expression involving a square root, then squaring both sides to finish solving. Check for extraneous solutions by substituting.
      ::通过分离涉及平方根的表达式来解析以下方程式中的每一个方程式, 然后将双方隔开以完成解析 。 通过替换来检查不相干的解决办法 。

    a. x = x b. x = x + 1 c. x = x 1 d. x = x e. x = 2 x f. x 1 = x
    ::ax=xb.x=x+1c.x=x-1d.x=xxxxx=2xf.x-1=x

    1. A traditional sailboat can increase its top speed by increasing its length. But the top speed is not directly proportional to its length. In other words, speed is not a linear function of length. The top speed is also not directly proportional to the square of its length. In other words, speed is not a quadratic function of length. The top speed of a sailboat is directly proportional to the square root of its length. Here is the equation approximately relating the top speed of a sailboat in kilometers per hour to its length in meters:
      ::传统的帆船可以通过增加长度来增加其顶部速度。 但顶部速度与其长度不直接成正比。 换句话说, 速度不是长度的线性函数。 顶部速度也与其长度的正方形不直接成正比。 换句话说, 速度不是长方形函数。 帆船的顶部速度与其长度的平方根直接成正比。 这里的方程式大约是每小时以公里计的帆船顶部速度与长度的米数:

    s ( x ) = 1.4 x

    ::s(x)=1.4x

    Graph this function.  Find the top speeds for boats of different lengths.  Find  the length required for a desired top speed. If the boat length is increased from 3 meters to 12 meters, by what factor does the speed increase? (Hint: divide  s ( 12 )  by  s ( 3 ) . )   In general, if the length is  quadrupled  from  a  to  4 a ,  by what factor does the speed increase?
    ::图形显示此函数。 查找不同长度船只的最高速度。 查找需要的最高速度所需的长度。 如果船的长度从3米增加到12米, 速度会增加什么因素? (提示: 将 s( 12) 除以 s(3) 。) 一般来说, 如果长度从一到 4a 翻四番, 速度会增加什么因素?

      Summary
    ::摘要

    • If two linear functions are inverses,   f ( g ( x ) ) = x   and   g ( f ( x ) ) = x .
      ::如果两个线性函数为反函数, f( g( x))=x 和 g( f( x))=x。
    • An inverse relation for any relation can be created by exchanging x  and y .
      ::任何关系的反比关系可以通过交换 x 和 y 来建立。
    • y = x 2   and   y = ± x are inverse relations.
      ::y=x2和yx是反向关系。
    • y = ± x is not a function.
      ::yx 不是一个函数 。
    • Square root functions can be solved by isolating the root and squaring both sides. Check for extraneous solutions.
      ::平方根函数可以通过分离根和分隔两侧来解决。 检查不相干的解决办法 。