章节大纲

  • Lesson Objectives
    ::经验教训目标

    • Interpret the characteristics of a polynomial within a real-world context.
      ::在现实世界背景下解释多元性的特点。
    • Use the Rational Zeros Theorem and division to find the zeroes and possible zeros of a polynomial with degree greater than two.
      ::使用理性的零点理论和分解来找到一个大于2度的多元数值的零和可能的零。
    • Understand the .
      ::理解这一点。
    • Identify the zeros of a polynomial given the graph.
      ::标记图形给出的多面体数的零。
    • Write and solve a polynomial within a real-world or mathematical context.
      ::在现实世界或数学背景下写并解析一个多义。

    Introduction: Container Volume Problem - Thick Walls
    ::导言:集装箱数量问题 -- -- 厚墙壁

    Use the interactive below to explore how  to find the volume of  different size containers that have walls that are 1 inch thick.
    ::使用下面的交互方式来探索如何找到墙壁厚1英寸的不同尺寸集装箱的容量。

     

    INTERACTIVE
    Container Problem Revisited
    minimize icon

    This cube container has walls which are 1 inch thick.
    ::这个立方体容器有1英寸厚的墙壁

    • Use the slider to change the side length of the cube.
      ::使用滑块更改立方体的侧长度 。
    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     

    In this lesson, you  will investigate the following questions: 
    ::在这一教训中,你将调查下列问题:

    1. What expressions could be used to model the side lengths?
      ::可使用什么表达式来模拟侧边长度?
    2. What polynomial could be used to model the volume the container can support?
      ::容器能够支撑的体积可使用何种多式模型?
    3. What size would the side length of the cube need to be to hold 150 cubic inches?
      ::立方体的侧长需要多少大小才能保持150立方英寸?

     


    Activity 1: Factored Form
    ::活动1:有因数形式

    To solve the problem above,  you will need  to know more about the zeros of a polynomial function . The zeros of a polynomial function are the x - intercepts Zeroes are also called  roots  in the context of a polynomial equation , where the term solutions may also apply
    ::要解决上述问题, 您需要了解更多关于多元函数的零。 多元函数的零是 X 截取。 在多元方程式的背景下, 零也被称为根。 在多元方程式中, 也可以使用术语解决方案 。

    To help visualize zeros, revisit the example from the section  Using Quadratic Methods.
    ::为帮助直观化零,请在“使用二次曲线方法”一节中重温这个例子。

    Example
    ::示例示例示例示例

    The concentration, in parts per million, of a medicine in a patient’s bloodstream after x  hours can be modeled using the function  C ( x ) = 0.002 x 3 0.16 x 2 + 3.2 x ,  given a specific domain . What are the zeros of this function ? What do they mean in context?
    ::病人在x小时后的血液中的药物浓度,每百万分之一的浓度,可以用功能C(x)=0.002x3-0.16x2+3.2x来模拟。根据特定域,该函数的零值是多少?在上下文中它们意味着什么?

    The polynomial can be factored as follows: 
    ::多元性可考虑如下:

    0.002 x 3 0.16 x 2 + 3.2 x = 0.002 x ( x 40 ) ( x 40 )

    ::0002x3-0.16x2+3.2x=0.002x(x-40)(x-40)

    The graph  of  this polynomial  is: 
    ::此多面体的图示是 :

    lesson content

    Use the graph and the factored form of the polynomial to answer the questions below.
    ::使用图形和多数值的因子形式回答下面的问题。

     

     

    Discussion Question : Write  a non-linear polynomial function in factored form that has one  zero .   W rite a non- quadratic function in factored form that has  two   zeros.
    ::讨论问题: 以系数为零以非线性多元函数写成。 以系数为零以二为零以非线性多元函数写成。 以系数为零以二为零以非二次的二次函数写成。

     

    When the solutions or x -intercepts repeat, this refers to the multiplicity of that solution. A solution that occurs once has a multiplicity of 1,  a solution that occurs twice has a multiplicity of 2,  a solution that occurs three times has a multiplicity of 3, etc.
    ::当解决方案或 X 界面重复时, 这里指的是该解决方案的多重性。 一旦出现的解决办法有多重性 1, 两次出现的解决办法有多重性 2, 三次出现的解决办法有多重性 3 等 。

    In the example  C ( x ) = 0.002 x ( x 40 ) ( x 40 ) ,  the solutions are 0 and 40. The solution 40  has a multiplicity of 2 because it occurs twice. In the next activity, you will explore the effect that m ultiplicity has on the graph of a polynomial function.
    ::在C(x)=0.002x(x-40)(x-40)(40)的示例中,解决办法是0和40。40的答案是40。40的答案是2倍,因为它发生两次。在下一个活动中,你将探讨多重性对多元函数图形的影响。

     


    Activity 2: Rational Zeroes Theorem
    ::活动2:理性零点理论

    Factoring a polynomial function  can help you to easily identify the zeros because it allows you to use  the zero product property
    ::乘以一个多元函数可以帮助您很容易地识别零,因为它允许您使用零产品属性。

    Example
    ::示例示例示例示例

    A furniture company performed an analysis on one of the couches they sell.
    ::一家家具公司对其出售的沙发之一进行了分析。

    • The revenue as a function of selling x  couches can be modeled by the function  R ( x ) = 47 x 2 x 3 .  
      ::销售 x 沙发的收入函数,可以用 R(x) = 47x2 - x3 函数模拟。
    • The monthly cost of selling x  couches can be modeled using  C ( x ) = 239 x + 287.
      ::可使用C(x)=239x+287模拟出售x沙发的月成本。
    • The profit function can be modeled using the polynomial  P ( x ) = x 3 + 47 x 2 239 x 287.  
      ::利润函数可使用多边 P(x) x3+47x2-239x-287模型构建。

    Use algebraic methods to find  the zeroes of this function.
    ::使用代数方法查找此函数的零。

     

    INTERACTIVE
    Comparing Graphs
    minimize icon
    • Use the dropdown menu to switch between graphs.
      ::使用下拉菜单在图形之间切换。
    • Click the red points to see their values.
      ::单击红点以查看它们的值 。
    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     

    T here are not any quadratic methods that will work for this case. Instead, t he function  P ( x ) = x 3 + 47 x 2 239 x 287  can be written in factored form using the R ational F actors T heorem. The factors of the leading coefficient , -1, are ± 1. The factors of the constant , -287, are ±1, ±7, ±41, ±287. The possible rational factors  are: 
    ::不存在适用于此案例的任何二次曲线方法。 相反, 函数 P( x) x3+47x2-2-239x-287可以使用理性因素理论以系数形式写成。 主要系数-1的系数为 +1。 常数- 287的系数为 +1, +7, 41, 287, 可能的理性因素为 :

    ( 1 x + 1 ) ,   ( 1 x 1 ) ,   ( 1 x + 7 ) ,   ( 1 x 7 ) ,   ( 1 x + 41 ) ,   ( 1 x 41 ) ,   ( 1 x + 287 ) ,   ( 1 x 287 ) ,   ( 1 x + 1 ) ,   ( 1 x 1 ) ,   ( 1 x + 7 ) ,   ( 1 x 7 ) ,   ( 1 x + 41 ) ,   ( 1 x 41 ) ,   ( 1 x + 287 ) ,   ( 1 x 287 )
    :伤心1x+1)、(1x-1)、(1x-1)、(1x+7)、(1x-7)、(1x-7)、(1x+41)、(1x-41)、(1x+287)、(1x-287)、(1x-287)、(1x-1x+1)、(-1x-1/1)、(-1x+7)、(-1x-7)、(-1x+41)、(-1x-41)、(1x+287)、(-1x-287)

    B egin by testing  ( 1 x + 1 )  and  continue through the list until you  find a factor . Keep in mind that none of these may be factors.
    ::开始测试( 1x+1) , 并在列表中继续直到您找到一个系数 。 请记住, 这些要素都不是因素 。

    lesson content

    Since the remainder is 0,  x + 1  is a factor of  x 3 + 47 x 2 239 x 287.   Furthermore the quotient when  x 3 + 47 x 2 239 x 287  is divided by  x + 1  is  x 2 + 48 x 287.  Thus, the polynomial can be written as: 
    ::由于其余为0,x+1是-x3+47x2-239x-239x-287的乘数,因此,当-x3+47x2-2-239x-287除以x+1时,多数值可以写成:

    x 3 + 47 x 2 239 x 287 = ( x + 1 ) ( x 2 + 48 x 287 )

    ::-x3+47x2-239x-287=(x+1)(-x2+48x-287)

    The quadratic factor   x 2 + 48 x 287   can be further factored into ( 1 x + 7 ) ( x 41 ) .  It is customary to factor out negative leading coefficients as well.  For example,  ( 1 x + 7 )  can be rewritten as  ( x 7 ) ,   so the polynomial in factored form is: 
    ::二次系数-x2+48x-287可以进一步纳入(-1x+7)(x-41),通常也考虑负主要系数。例如,(-1x+7)可以改写为(x-7),因此,系数形式的多数值为:

    x 3 + 47 x 2 239 x 287 = ( x + 1 ) ( x 7 ) ( x 41 )

    ::-x3+47x2-2-239x-287(x+1)(x-7)(x-41)

    U sing the zero product  property, find  the zeros of the function as follows: 
    ::使用零产品属性,查找函数的零如下:

      •   1 0

       •   x + 1 = 0 x = 1
    ::• x+1=0x%1

       •   x 7 = 0 x = 7
    ::• x-7=0x=7

       •   x 41 = 0 x = 41
    ::• x-41=0x=41

    Answer: The zeros of P ( x )  are -1, 7, and 41.
    ::答复:P(x)零是-1、7和41。

    The zeros of the profit function represent the break-even points. If the price is set to $7 or $41, the company will make $0 profit. The zero at  -1 should be ignored because the price cannot be set to -$1. In general, the domain of the profit function only includes prices greater than or equal to 0, or  x 0.
    ::利润函数的零代表平衡点。 如果价格定在7美元或41美元, 公司将产生0美元利润。 以 - 1 的零应该忽略, 因为价格不能定在 - 1 美元。 一般来说, 利润函数的域只包括大于或等于 0 或 x+0 的价格 。

    Since the factors of a polynomial determine the zeros ( t he factor a x b  will have a zero at  b a ) ,   the R ational F actors T heorem can be extended to zeros.
    ::由于多元系数的系数决定零(系数ax-b在巴巴为零),理性系数理论可以扩大到零。

    Rational Zeros Theorem
    ::理性零点定理

    If  q p  is a zero of the polynomial function p ( x )  with integer coefficients, then q  is a factor of the constant term, and p  is a factor of the leading coefficient.

     

     

      


    Activity 3: The Fundamental Theorem of Algebra
    ::活动3:代数的基本理论

    The chapter Functions  explored the Fundamental Theorem of Algebra in quadratics. A ll degree 2 functions have 2 roots.
    ::本章“函数”探讨了二次方位代数的基本理论。所有二级函数都有2个根。

    From this, you  might speculate that a  function of degree n  would have n  roots. This conjecture is the Fundamental Theorem of Algebra .
    ::由此,你可能会推测, 程度 n 的函数有正根。 这个猜想是代数的基本理论 。

    The Fundamental Theorem of Algebra 
    ::代数基本理论

    Any polynomial with complex coefficients of degree n  has n  complex roots, including repeated roots.

    Although some roots may not be rational, they still exist as irrational  or complex roots.
    ::虽然有些根源可能不合理,但它们作为不合理或复杂的根源仍然存在。

    Example
    ::示例示例示例示例

    Find the zeros of the function:  f ( x ) = 4 x 4 4 x 3 23 x 2 x 6
    ::查找函数的零: f(x)=4x4-4x4-4x3-23x2-x-6

    To find the zeros of a function, a n alternative to using the R ational Z eros T heorem is using a graph. Use the  graph below to find any rational zeros of f ( x ) .
    ::要找到函数的零, 使用理性零点理论的替代方法正在使用一个图形。 使用下方的图形来查找任何f( x) 的理性零。

     

     

    The graph shows two zeros:  -2 and 3. However, according to the Fundamental Theorem of Algebra, there should be 4 roots because this is a degree 4 polynomial.
    ::该图显示两个零:-2和3。 然而,根据代数的基本理论,应该有4根根,因为这是4度多义。

    T he missing roots are not irrational because irrational roots cross the x -axis at irrational values. Since  there are no other  x -intercepts the missing roots must be complex.
    ::缺失的根不是非理性的,因为非理性的根以非理性的值跨越 X 轴。 因为没有其他的 X 拦截, 缺失的根必须复杂。

    To find the complex roots,  start by dividing the polynomial by the known factors. The root -2 means that  x + 2  is a factor of  f ( x )  and the root 3 means that x 3  is also a factor of  f ( x ) .
    ::要找到复杂的根根, 首先从已知因素除以多元系数开始。 根 - 2 意味着 x+2 是 f( x) 的因数, 根 3 意味着 x-3 也是 f( x) 的因数 。

    You  could either divide by these factors one by one using synthetic division , or multiply them together and divide by  the resulting product This would be similar to how  dividing 12 by 2 and then by 3 is the same as dividing 12 by 6.
    ::您可以用合成分裂法将这些因素一一地除以,也可以用合成分裂法将这些因素一一地相除,或者将这些因素相乘,然后用所产生的产品加以除以。这类似于12除以2,然后再除以3等于12除以6。

    The factors multiply to  ( x + 2 ) ( x 3 ) = x 2 x 6.   U se long division to divide  4 x 4 4 x 3 23 x 2 x 6   by  x 2 x 6.
    ::乘以 (x+2)(x-3) =x2-x-6) 乘以 (x2-x3) =x2-x-6 。

    lesson content

    The division problem above can be written as: 
    ::上面的划分问题可以写为:

    4 x 4 4 x 3 23 x 2 x 6 = ( x 2 x 6 ) ( 4 x 2 + 1 )

    ::4x4-4x3-23x2-x-6=(x2-x-6)(4x2+1)

    This can be factored since   x 2 x 6 = ( x + 2 ) ( x 3 ) .
    ::从 x2 - x - 6= (x+2)(x- 3) 开始可以计算。

    4 x 4 4 x 3 23 x 2 x 6 = ( x + 2 ) ( x 3 ) ( 4 x 2 + 1 )

    ::4x4-4x3-23x2-x-6=(x+2)(x-3)(4x2+1)

    Although the  quadratic   4 x 2 + 1   cannot be factored using rational numbers,  t he zeros can be found using the square root method.
    ::虽然方形 4x2+1 无法使用合理数字进行系数计算,但可用平方根法找到零。

        
    x + 2 = 0 2 2 x = 2
         
    x 3 = 0 + 3 + 3 x = 3
        
    4 x 2 + 1 = 0 1 1 4 x 2 = 1 ÷   4 ÷   4 x 2 = 1 4 x 2 = 1 4 x = ± i 1 4 x = ± 1 2 i

    Answer:   2 , 3 , 1 2 i , 1 2 i
    ::答复:-2,3,12i,-12i

     

     

     

    Discussion Question : Is it possible for a polynomial to have an odd number of complex roots?
    ::讨论问题:多族制是否可能有数量奇多的复杂根根?

     


    Activity 4:  The Container Problem Solved
    ::活动4:解决集装箱问题

    Answer the questions  below to solve the problem asked in the introduction: What size would the sides of the cube need to be to hold 150 cubic inches?
    ::回答以下问题以解决导言中提出的问题:立方体的两侧需要多少尺寸才能保持150立方英寸?

    Recall the container problem and interactive from the introduction:
    ::回顾前言中的集装箱问题和互动:

     

    INTERACTIVE
    Container Problem Revisited
    minimize icon

    This cube container has walls which are 1 inch thick.
    ::这个立方体容器有1英寸厚的墙壁

    • Use the slider to change the side length of the cube.
      ::使用滑块更改立方体的侧长度 。
    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     

     

     

     

    Discussion Question How could you solve  the container  problem without rewriting the equation into standard form ?
    ::讨论问题:如果不将等式改写成标准形式,你如何解决集装箱问题?

     


    Wrap-Up: Review Questions
    ::总结:审查问题

     

     

    Summary
    ::摘要

    • The zeros of a polynomial function are the x - intercepts.
      ::多面函数的零是 X 界面。
    • The Rational Zeros Theorem states that if q p  is a zero of the polynomial function p ( x )  with integer coefficients, then q  is a factor of the constant term, and p  is a factor of the leading coefficient. 
      ::理性零理论指出,如果qp是具有整数系数的多元函数p(x)的零,则q是常数的一个系数,p是主要系数的一个系数。
    • The Fundamental Theorem of Algebra states that any polynomial with complex coefficients of degree n  has n  complex roots, including repeated roots.
      ::代数的基本理论指出,任何具有复杂程度系数的多元性,都有复杂的根部,包括反复的根部。