章节大纲

  • Lesson Objectives
    ::经验教训目标

    • Identify the effect on  graphs of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative).
      ::以 f( x) + k、 k( f( x)、 f( kx) 和 f( x) + k ) 替换 f( x) 的图形, 以 k( 正和负) 的具体值来表示 。
    • Graph trigonometric functions , showing period, midline, and .
      ::图表三角函数,显示期间、中线和 。

    Introduction: Modeling Sound
    ::导言:建模声音

    I n the previous section, Trigonometric Functions, you looked at how sine and cosine functions can be used to model astronomical phenomena.  Sine functions and cosine functions form a wave pattern. Since sound and light travel as a wave, trigonometric functions are especially useful in modeling their behavior. In the section ,  you learned that music notes increase exponentially in frequency. Additionally, when frequencies are combined, the sound will be more pleasing if the ratio of the frequencies reduces to a simple ratio. Use the interactive below to explore this interaction between  sound waves visualized as sinusoidal functions .
    ::在上一节“三角函数”中,您查看了如何用正弦和正弦函数来模拟天文现象。正弦函数和余弦函数形成波形。由于声光波和光波形,三角函数在模拟其行为方面特别有用。在节中,您了解到音乐的频率成倍增加。此外,当频率合并时,如果频率比降低到简单比例,声音会更令人高兴。使用下面的交互作用来探索声波之间的这种相互作用,将声波可视化为正弦函数。

     

    Discussion Questions:
    ::讨论问题:

    1. Sounds are more pleasing when there is a simple ratio between the frequencies. Set f ( x ) and g ( x ) to frequencies such as the ratio of an octave, where the ratio of f ( x ) to g ( x ) is 2:1. What about the sound waves makes you think this sound would be considered pleasing? Try other common intervals in music like the perfect fifth (3:2) and perfect fourth (4:3).
      ::当频率之间的比例比较简单时,声音会更令人高兴。 设置 f( x) 和 g( x) 与频率的比, 如八进制的比例, F( x) 与 g( x) 的比率是 2 。 那么声波会让您认为这声音会令人高兴吗? 尝试音乐中的其他常见间隔, 如完美的第五次( 3: 2) 和 完美的第四次( 4: 3) 。
    2. Why do you think a note sounds the same at opposite amplitudes like 0.5 and -0.5?
      ::为什么你认为一个音符 听起来和0.5和0.5一样?

    Activity 1: Amplitude
    ::活动1:振幅

    I t will take a vertical stretch or shrink to change the of a sine or cosine function.  A vertical stretch or shrink on the function  f ( x )   can be modeled as a f ( x ) . Using a sine and cosine function, this would look like  y = a sin x  or  y = a cos x .   If  a > 1 ,  the function will stretch vertically by a factor of  a .   If  a < 1 ,  the function will shrink vertically by a factor of  1 a .  
    ::要改变正弦函数或余弦函数,需要垂直伸缩或缩缩。函数 f(x) 的垂直伸缩或缩缩可以以 af(x) 模式建模。使用正弦和余弦函数,这看起来像 y=asinx 或 y=acosx。 如果 a> 1, 函数将垂直延伸为 a 的因数。 如果是 < 1, 函数将垂直缩缩缩为 1a 的因数 。

    Example
    ::示例示例示例示例

    G raph   y = 1 2 cos x   over two periods.
    ::横跨两个时期的 y= 12cosx图。

    Since the value of a is less than 1, the amplitude will shrink. I n this case, the function will shrink vertically by half. The height of every output will be half of the height for the parent cosine function,  f ( x ) = cos x .
    ::由于 a 值小于 1, 振幅会缩小。 在这种情况下, 函数会垂直缩小一半。 每个输出的高度将是父余弦函数的高度的一半, f( x) =cosx 。

    Answer:
    ::答复:

    The graph of y = cos x   is shown in blue, and the graph of y = 0.5 cos x   is shown in red.

    Just like with other functions, when the leading coefficient is negative, the function is reflected over the x -axis . Use the interactive below to explore the relationship between the a -value  and the amplitude of the graph.
    ::正如其他函数一样,当主要系数为负值时,函数会反射到 X 轴上。使用下面的交互功能来探索图表的值和振幅之间的关系。


    Activity 2: Period
    ::活动2:活动期2:

    A horizontal stretch or shrink changes the period of a sine or cosine function. A horizontal stretch or shrink on the function  f ( x )   can be modeled as  f ( b x ) .   Using a sine and cosine function, this would look like  y = sin ( b x )  or  y = cos ( b x ) .   If  b > 1 ,   the function will shrink horizontally by a factor of  b .   If  b < 1 ,   the function will stretch horizontally by a factor of  1 b .   
    ::水平拉伸或缩放会改变正弦函数或余弦函数的周期。 函数 f( x) 上的水平拉伸或缩放可以以 f( b) (x) 模式建模。 使用正弦和余弦函数, 这看起来像 y=sin( b) 或 y=cos ( b) 。 如果 b> 1, 该函数会水平缩放为 b 的系数。 如果 b < 1, 该函数会水平拉动为 1b 的系数 。

    Example
    ::示例示例示例示例

    Graph  y = sin ( 1 3 x )  over two periods.
    ::图y=sin(13x),横跨两个时期。

    Since the value of a is 3, which is less than 1, the period will stretch by a factor of 3. The x-value of every output will triple from the parent sine function,  f ( x ) = sin x .  The image below shows the graph of  y = sin x  in blue and the graph of  y = sin ( 1 3 x )  in red for comparison. 
    ::由于一个值为 3, 低于 1, 时段将延伸为 3 乘以 3, 每个输出的 x 值从父正弦函数 f( x) = sinx 将增加三倍。 下面的图像显示 y= sinx 的蓝色图和 y=sin( 13x) 的红色图, 以便比较 。

    Answer:
    ::答复:

    lesson content
    The graph of y = sin x   is shown in blue, and the graph of  y = 1 3 sin x    is shown in red.

    Just like with other functions, when the value of b is negative, the function is reflected over the y-axis. Explore this relationship further below.
    ::与其他函数一样, 当 b 值为负时, 该函数会反映在 Y 轴上。 请在下面进一步探讨此关系 。

     


    Activity 3:  Shifts  
    ::活动3:变动

    The horizontal shift of a sinusoidal graph is called a phase shift . The rules for the transformation of trigonometric functions are consistent with the rules for other functions. This type of transformation occurs when a quantity is added to or subtracted from the input of a function. This type of shift can be written as f ( x h ) = s i n ( x h ) .  Recall that with horizontal translations, a  positive h  value will shift the function h units left, and a negative h  value will shift the function  h  units right. 
    ::等离子图的横向移动称为相移。三角函数的转换规则与其他函数的规则是一致的。当函数输入中添加或减去一个数量时,这种类型的转换就会发生。这种类型的转换可以写成 f(x-h)=sin(x-h) =sin(x-h) 。提醒注意,如果水平转换,正 h 值会改变函数左移 h 单位,而负 h 值会将函数向右移动 h 单位。

    Example
    ::示例示例示例示例

    Graph y = cos ( x π 4 )
    ::图y=cos(x%4)

    This function will be shifted π 4 units to the right. The easiest way to sketch the curve is to start with the parent graph and then move it to the right the correct number of units.
    ::此函数将被移到右侧 4 个单位。 绘制曲线最容易的方法是从父图形开始, 然后将其移动到右侧, 正确的单位数 。

    Answer: 
    ::答复:

    A graph showing Graph y=cos(x−π/4)

    Sinusoidal functions can be shifted vertically by adding or subtracting a quantity to the output of the function. This type of shift can be written as  f ( x ) + k = s i n ( x ) + k .  A positive k-value will shift the function k units up, and a negative k-value will shift the function k units down. Use the interactive below to explore vertical shifts of the sine functions.
    ::Sinusoid 函数可以通过在函数输出中增加或减去一个数量来垂直移动。 这种类型的转换可以写成 f( x)+k=sin( x)+k。 正面的 k- 值会将函数 k 单位向上移动, 负的 k- 值会将函数 k 单位向下移动。 使用下面的互动来探索正弦函数的垂直移动 。

     


    Extension: Shifts Continued
    ::扩展扩展: Shifts 继续

    Use the interactive below for more practice shifting sinusoidal functions.
    ::使用下面的交互功能来做更多的练习, 转换正弦函数 。

     


    Activity 4: Transforming Sine and Cosine Functions
    ::活动4:改变正弦和余弦函数

    The general equation for a sine curve is:  y = a sin ( b ( x h ) ) + k .   Use the interactive below to explore this form.
    ::正弦曲线的一般方程是:y=asin(b(x-h)+k)+k。使用下面的交互式方程来探索这个形式。

    Example
    ::示例示例示例示例

    Without using a graphing calculator, sketch the graph of  a sine function  where a = 3 ,   h = π 2 ,   b = 2 ,   and  k = 4.   
    ::在不使用图形计算器的情况下,绘制正弦函数的图形,其中a=3, h2, b=2, k=4。

         S tart by writing an equation with the values given above:
    ::以写入上面给定值的方程式开始 :

    y = 3 sin ( 2 ( x π 2 ) ) + 4


    ::y= 3sin (2(x2)+4

    It will be helpful to start with the parent graph and translate it one step at a time.  The graph below displays the function  y = s i n ( x )
    ::以父图形开始并一次翻译一个步骤将会很有帮助。 下图显示函数 y=sin( x)

    The graph of y = sin x  

    Now adjust the phase shift of the function, which shifts the graph to the left by  π 2  or 90 o . The function graphed below in blue is the function  y = sin ( x π 2 ) .
    ::现在调整函数的相位移, 该函数将图向左移到 2 或 90 o 。 下面以蓝色绘制的函数是 y=sin( x) 2 函数 y=sin。

    The graphs y = sin x   (orange), and y = sin ( x π 2 )   (blue)

    Now adjust the midline of the function. The value of  k  impacts the location of the midline. In this example, k = 4 ,  which shifts the graph up by 4  units on the y-axis. The purple function graphed below is the function  y = sin ( x π 2 ) + 4 .  
    ::现在调整函数的中线。 k 的值会影响中线的位置。 在此示例中, k=4 将图形在 Y 轴上向上移动 4 个单位。 下面的紫色函数是 y=sin( x2)+4 函数 。

    The graphs y = sin ( x π 2 )   (blue), and y = sin ( x π 2 ) + 4   (purple)

    Next, adjust the amplitude of the function. The amplitude of the purple graph  is 1, but the  new equation has  an amplitude of   3 , so the distance between the midline (which is now at  y = 4 )  and the maximum and minimum y-values should be 3 . Therefore, the maximum and minimum values should be at y = 1  and  y = 7.  The function graphed below in green is the function :   y = 3 sin ( x π 2 ) + 4
    ::接下来,调整函数的振幅。紫色图的振幅为1,但新方程式的振幅为3,因此中间线(目前为y=4)之间的距离和最大和最小的y值应为3,因此,最大和最低值应为y=1和y=7。以下以绿色显示的函数为函数:y=3sin(x=2)+4。

    The graphs y = sin ( x π 2 ) + 4   (purple) and y = 3 sin ( x π 2 ) + 4   (green)

    Finally, you  need to adjust the frequency of the graph.  Since  the value of b  is 2, the graph needs to go through 2 complete cycles between 0º and 360º or between 0 and  2 π . The function  graphed in red  below is the function  y = 3 sin ( 2 ( x π 2 ) ) + 4 .  
    ::最后,您需要调整图形的频率。由于 b 值为 2 , 图形需要经历 0o 至 360o 或 0 至 2 ° 之间的两个完整周期。 以下红色图表显示的函数是 y= 3sin (2(x)2)+ 4 函数 y= 3sin (2(x)2)+4 。

    A graph of a red line and a green line, from the previous transformations
    The red graph is of the function y = 3 sin ( 2 ( x π 2 ) ) + 4.  

    Example
    ::示例示例示例示例

    Find the equation of the cosine curve below.
    ::在下面查找余弦曲线的方程。

    A wavy line crossing only the Y axis
    Find the equation of the cosine curve below.

    The parent graph is in green (below). It moves up 3 units (red) and then to the right 3 π 4 units (blue). This means that the  h  value is 3 π 4  and the  k  value is 3. Therefore, the equation is y = cos ( x 3 π 4 ) + 3 .
    ::父图以绿色( 下方) 表示, 它向上移动 3 个单位( 红色) , 然后向右移动 3 4 个单位( 蓝色) 。 这意味着 h 值是 3 4, k 值是 3 。 因此, 方程式是 y=cos( x-3 4)+ 3 。

    Answer:   y = cos ( x 3 π 4 ) + 3
    ::答复:y=cos(x-3-4)+3

    If you moved the cosine curve  left instead of right , i t would produce the equivalent equation  y = cos ( x + 5 π 4 ) + 3.  Use the interactive below to practice graphing a translated function .
    ::如果将余弦曲线向左移动而不是向右移动,它会产生等效的公式y=cos(x+54)+3。 使用下面的交互作用来练习绘制翻译函数的图形。

     

    Discussion Question: How can you write the sine function as a transformation of the parent cosine function? 
    ::讨论问题:您如何将正弦函数写成父余弦函数的转换?

      Summary
    • There are many different ways to transform the graph of a sine or cosine function.
      The general equation for the transformations of a sine function is y = a sin ( b ( x h ) + k  
      • a  is the vertical stretch, changing the amplitude.
        ::a 是垂直伸展,改变振幅。
      • b  is the horizontal stretch, changing the period.
        ::b 是水平拉伸,改变周期。
      • h  is the horizontal shift, or phase shift, moving the graph right or left.
        ::h 是指水平移动,或相向移动,向右或向左移动图形。
      • k  is the vertical shift, moving the graph up or down.
        ::k 是垂直移动, 向上或向下移动图形 。

      ::转换正弦函数或正弦函数的图形有多种不同方式。正弦函数或正弦函数的转换一般方程式是 y=asin(b(x-h)+k a) 是垂直拉伸, 改变振幅。 b 是水平拉伸, 改变周期。 h 是水平移动, 或相向移动, 向右或向左移动。 k 是垂直移动, 向上或向下移动 。

    Wrap-Up: Review Questions
    ::总结:审查问题