章节大纲

  • Elimination
    ::消除

    The lesson discussed  how to solve a system of equations using substitution. Consider the following example:
    ::课程讨论了如何用替代方法解决方程式系统的问题。

    x 2 y = - 16 - 5 x + 2 y = 24

    ::x-2y=-16-5x+2y=24

    While it is possible to solve this system of equations using substitution and/or graphing, both can pose challenges. The most efficient way to solve this problem would be to use elimination. Elimination is a strategy for solving systems of equations that involves adding or subtracting equations.
    ::虽然使用替代和(或)图形方法解决这一方程式系统是可能的,但两者都可能构成挑战,解决这一问题的最有效途径是消除。消除的方法是解决包含增减方程式的方程式系统的战略。

     


    Understanding Elimination
    ::理解

    Elimination makes use of our ability to add equations. It is possible to add one equation to another. Both sides of the equation are equal, so  you are adding the same quantity to both sides.
    ::消除会利用我们的能力来添加方程式。 可以将一个方程式添加到另一个方程式中。 等式的两边是相等的, 所以您会给两边添加相同数量 。

    Example
    ::示例示例示例示例

    Solve  the system of equations using the elimination method :
    ::使用消除方法解决方程式系统:

    3 x 4 y = 6 5 x + 4 y = 10

    ::3x-4y=65x+4y=10

    If  you want to add the equation 3 x 4 y = 6  to the equation 5 x + 4 y = 10  ,  you can add  6   to one side and 3 x 4 y  to the other. You can add the expressions to either side, but typically it is more efficient to match the variables.
    ::如果您想要将等式 3x--4y=6 添加到等式 5x+4y=10 中,您可以将公式 6 添加到一边,将公式 3x-4y=10 添加到另一边。您可以将表达式添加到一边,但通常匹配变量比较有效。

    3 x 4 y + 5 x + 4 y = 10 + 6

    ::3x-4y+5x+4y=10+6

    When  you add these equations,  you will get 8 x + 0 y = 16 . Since  0 y  is zero,  you can write the equation as 8 x = 16 . Looking at this equation,  you know that x = 2.  Typically when you add equations,  you do so vertically .
    ::当您添加这些方程式时, 您将得到 8x+0y=16。 由于 0y 是零, 您可以将方程式写为 8x=16。 查看此方程式, 您知道 x=2 。 通常当您添加方程式时, 您会垂直地这样做 。

    Use the interactive below to practice using this strategy to solve for unknown variables. 
    ::使用下面的交互效果来练习使用此策略来解决未知变量。

     

    INTERACTIVE
    Systems of Equations and Elimination
    minimize icon
    • Drag the red point to see the relationship between columns and rows of numbers.
      ::拖曳红色点以查看列和数字行之间的关系。
    • Press the button to see how the columns of numbers relate to a system of equations.
      ::按下按钮查看数字列与方程系统的关系。
    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     

     

     

     


    How to Use Elimination
    ::如何使用删除

    Here are the steps to perform elimination:
    ::以下是执行消除措施的步骤:

    1. Make sure like terms are lined up, and make sure that at least one pair of terms is additive inverses.
      ::确保类似术语的排列, 确保至少有一对术语是添加反差。
    2. Add the equations and solve the resulting equation.
      ::添加方程式并解析结果方程式。
    3. Substitute the value obtained from the previous step into one of the original equations. Choose the easier one.
      ::将从前一步获得的数值替换为原始方程之一。选择较容易的方程。
    4. Solve the resulting equation.
      ::解决由此产生的等式。

    Notice how steps 3 and 4 are the same as they were for substitution. Revisit the problem from the introduction to practice these steps.
    ::注意步骤3和4与替代步骤相同,重新研究从开始到实施这些步骤的问题。

    Example
    ::示例示例示例示例

    Solve  the system of equations using the elimination method:
    ::使用消除方法解决方程式系统:

    x 2 y = - 16 - 5 x + 2 y = 24

    ::x-2y=-16-5x+2y=24

    1. Make sure like terms are lined up and that at least one pair of terms is additive inverses.
      ::确保类似术语的排成一行,并且至少一对术语是添加反差。

    The x ’s, y ’s, constants and equal signs are lined up and  2 y  and  2 y  are additive inverses. Additive inverses will cancel when added. They make a zero pair.
    ::X, y, 常数和等号排成一行, 2-2y和2y是添加反差。 添加反差时会取消, 它们是零对数 。

    1. Add the equations and solve the resulting equation. 
      ::添加方程式并解析结果方程式。

    x 2 y = - 16 +       - 5 x + 2 y =   24   - 4 x                   =     8 x = - 2

    ::x-2y=16+-5x+2y=24-4x=8x=2

    1. Substitute the value obtained from the previous step into one of the original equations.
      ::将上一个步骤获得的数值转换成原来的方程之一。

    S ubstitute  2  in for the  x  in the second equation.
    ::第二个方程中的 x 的替代 - 2 英寸 。

    - 5 ( 2 ) + 2 y = 24

    ::-5(-2)+2y=24

    1. Solve the resulting equation.
      ::解决由此产生的等式。

    - 5 ( 2 ) + 2 y = 24 10 + 2 y = 24 2 y = 14 y = 7

    ::-5(-2)+2y=2410+2y=242y=242y=14y=7

    The solution to  the system of equations is the point (-2, 7). 
    ::方程式系统的解决办法就是点(-2, 7)。

    Discussion Question
    ::讨论问题

    Discuss how you might check if this solution is correct. What are the possible ways to do this? Think algebraically and visually. Try both, does this answer checkout using both methods?
    ::讨论您如何检查这个解决方案是否正确 。 可能的方法是什么 ? 考虑代数和视觉。 试两种方法, 这个答案是否使用两种方法 ?

     


    Rearranging Equations
    ::重新排列等量

    Example
    ::示例示例示例示例

    Solve the system of equations using the elimination method:
    ::使用消除方法解决方程式系统:

    2 x + 4 y = 40 x = 4 y 22

    ::2x+4y=40x=4y-22

    1. Make sure like terms are lined up and make sure that at least one pair of terms is additive inverses.
      ::确保类似术语排成一行,确保至少有一对术语是累加逆数。

    First, you  need to line up the terms, constants and equal signs. To do so you  will need to line up the  y  terms. One way to do this is to subtract  4 y   from  the other side in the second equation, placing it on the side with the  x . This will give us the following:
    ::首先, 您需要排列条件、 常数和等号 。 要这样做, 您需要排列 y 条件 。 其中一个方法就是在第二个方程中从另一侧减去 4 y, 将其与 x 放在一边 。 这将给我们提供以下条件 :

    2 x + 4 y =   40 x 4 y = - 22

    ::2x+4y=40x-4y=-22

    The  y  terms are additive inverses, they will cancel when you  add the equations.
    ::y 术语是添加反函数, 当你添加方程式时它们会取消 。

    1. Add the equations and solve the resulting equation. 
      ::添加方程式并解析结果方程式。

    2 x + 4 y = 40 x 4 y = 22 3 x = 18 x = 6

    ::2x+4y=40x-4y223x=18x=6

    1. Substitute the value obtained from the previous step into one of the original equations.
      ::将上一个步骤获得的数值转换成原来的方程之一。

    Substitute  6  in for the  x  in the first equation.
    ::替换第一个方程中的 x 的 6 英寸 。

    2 ( 6 ) + 4 y = 40

    ::2(6)+4y=40

    1. Solve the resulting equation.
      ::解决由此产生的等式。

    2 ( 6 ) + 4 y = 40 12 + 4 y = 40 4 y = 28 y = 7

    ::2(6)+4y=4012+4y=404y=28y=7

    The solution to the linear equation is the point (6, 7).
    ::线性方程的解决方案是点(6,7)。

     

      Summary
    • Additive inverses are two numbers that have a sum of zero. 
      • Use the elimination method to solve a system of equations:
        ::使用消除方法解决方程式系统:
      • Make sure like terms are lined up, and make sure that at least one pair of terms are additive inverses.
        ::确保类似术语排成一行,确保至少有一对术语是添加反言。
      • Add the equations and solve the resulting equation.
        ::添加方程式并解析结果方程式。
      • Substitute the value obtained from the previous step into one of the original equations. 
        ::将上一个步骤获得的数值转换成原来的方程之一。
      • Solve the resulting equation.
        ::解决由此产生的等式。

      ::添加反差是两个数字,这两个数字总和为零。使用消除法解决方程式系统:确保类似条件的排列,并确保至少有一对条件是添加反方程式。添加方程式并解析所生成的方程式。将从前一步获得的数值替换为原始方程式之一。解析所生成的方程式。