10.3 简化广场根和立方根-interactive
Section outline
-
Simplifying Square Roots
::简化平方根R adicals are common in construction where dimensions often include roots, like in the example below. How could you find the area of the rectangle?
::激进主义在建筑中很常见,其维度往往包括根,例如下面的例子。 您如何找到矩形区域 ?Rectangle using square roots The lessons and discussed strategies to simplify square roots of perfect squares. However, those strategies will not work for the square root of a number that is not a perfect square . In this lesson, you will learn how to simplify the square root of numbers that are not perfect squares.
::教训和讨论的简化完美方块平方块平方块平方根的战略。 但是,这些战略对于不是完美的平方块数字的平方根行不通。 在这一教训中,您将学会如何简化非完美的平方块平方块平方块平方块平方根。
Taking Out Perfect Squares Method
::推出完美广场方法One way to simplify a square root is to take out any perfect square factors. To do this, you will need the product property of radicals .
::简化平方根的方法之一是消除任何完美的平方因素。 要做到这一点,你将需要激进分子的产品特性。√ a b = √ a ⋅ √ b
::bIf y ou know that the radicand has a factor that is a perfect square, this property allows you to separate it from the other factors of the radicand.
::如果您知道射线线有一个完全正方形的系数, 这个属性允许您将其与射线的其他因素分开。Example
::示例示例示例示例Simplify √ 50
::简化 50Since you know that 25 is a perfect square and a factor of 50, you can rewrite √ 50 as √ 25 ⋅ 2 = √ 25 ⋅ √ 2 . T hen you can simplify √ 25 to 5.
::既然你知道25是完美的方形和50乘以50, 你可以把50改成252=252=252。 然后你就可以简化25=5。The square root of 50 is equal to 5 √ 2 .
::50平方根等于52。Use the interactive below to practice the "taking out perfect squares" method of simplifying square roots. Make sure you use the largest perfect square that is a factor of the radicand.
::使用下面的交互效果来练习“ 采集完美的平方” 简化平方根的方法。 请确定您使用最大的正方块, 也就是弧线的一个要素 。
Prime Factorization Method
::基本因素化方法The "taking out perfect squares" method is quick and easy but what if you do not know if the radicand has any factors that are perfect squares? In this case, the prime factorization method is perfect. The prime factorization method involves finding the prime factorization of the radicand and taking the square root of pairs of the same factor . This method works because squares and square roots are inverses :
::“ 找出完美方块” 的方法既快又容易, 但如果你不知道该弧线是否有完美方块的因素呢? 在这种情况下, 质因数法是完美的。 质因数法是完美的。 质因数法是找到弧线的质因数, 并取出相同因数的平方根。 这个方法之所以有效,是因为方根和平方根是反的:√ a ⋅ a = √ a 2 = a
::aaa2=aThe square root of a factor that is multiplied by itself will simplify to the factor, as shown in the example below.
::乘以本身的一个系数的平方根将简化为系数,如下文示例所示。√ 6 ⋅ 6 = √ 6 2 = 6
When simplifying a radical using the prime factorization method use the following steps:
::在使用初级乘数法简化激进分子时,采用下列步骤:-
Write the prime factorization of the radicand.
::写下半径的质因子化 。 -
Take the square root of
pairs of the same factor
::取同因数之对的平方根
Example
::示例示例示例示例Simplify √ 180 .
::简化180。-
Write the prime factorization of the radicand.
::写下半径的质因子化 。
√ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5
-
Take the square root of
pairs
of the same factor.
::取同因数的平方根。
√ 2 ⋅ 2 ⋅ √ 3 ⋅ 3 ⋅ √ 5 √ 2 2 ⋅ √ 3 2 ⋅ √ 5 2 ⋅ 3 ⋅ √ 5 6 √ 5
The square root of 180 is equal to 6 √ 5 .
::180平方根等于65。Use the following interactive to practice the prime factorization method.
::使用以下交互式方法来实践质因子化法。
Simplifying Expressions with Radicals
::用激进词简化表达式Now that you can simplify radicals, use your knowledge to solve the problem from the introduction.
::现在,你可以简化激进, 使用你的知识 来解决问题 从引言。Find the area of the rectangle below:
::查找矩形区域如下:Rectangle using square roots The formula for the area of a rectangle is Area = base ⋅ height . The base of the rectangle is 3 √ 6 , and the height of the rectangle is 4 √ 15 .
::矩形区域的公式是“区域”= baseQleight。矩形的底部是36,矩形的高度是415。Area = base ⋅ height Area = 3 √ 6 ⋅ 4 √ 15 Area = 12 √ 90 Area = 12 √ 9 ⋅ 10 Area = 12 ⋅ 3 √ 10
::区域= 基地= 36415 区域= 1290 区域= 12910 区域= 12310 10The area of the rectangle is 36 √ 10 in 2 .
::矩形区域为3610英寸2。
Simplifying Cubic Roots
::简化三次器根When simplifying cubic roots, you can use the methods you used for square roots with minor modifications.
::当简化立方根时,您可以使用用于平方根的方法,只要稍作修改。Taking Out Perfect Cubes Method
::采用完美立方体方法When using this method, you will need to look for perfect cube factors like 8, 27, 64, etc.
::当使用此方法时, 您需要寻找 诸如 8、 27、 64 等完美的立方系数 。Example
::示例示例示例示例Simplify 3 √ 40 .
::简化 3'40.You know that 40 = 8 ⋅ 5 so you can say that 3 √ 40 = 3 √ 8 ⋅ 5 = 3 √ 8 ⋅ 3 √ 5 = 2 3 √ 5 .
::你知道40=85,所以你可以说340=385=383=235。Prime Factorization Method
::基本因素化方法When using this method, take out groups of three rather than pairs of the same factor.
::在使用这种方法时,除去三个因素的组而不是同一个因素的对。Example
::示例示例示例示例Simplify 3 √ 250 .
::简化3250。S tart by writing the prime factorization of 250 which is 2 ⋅ 5 ⋅ 5 ⋅ 5 . You can take out the group of three 5's since 3 √ 5 ⋅ 5 ⋅ 5 = 5 . This gives you the answer 5 3 √ 2 .
::以写入 250 的质因数开始,即 2 5 5 5 5 5 5。 您可以从 3 5 5 5 5 5 5 5 5 5 开始, 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 . 5 5 . 5 5 5 5 5 . 5 5 . 5 . 5 5 . 5 5 . 5 . 5 5 . 5 5 . 5 . 5 5 . 5 . 5 5 . 5 5 . 5 5 5 . 5 . 5 . 25 . . 25 . . . 25 . . . . 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solving Squares and Cubes
::解决广场和立方体When solving equations with a variable that is squared or cubed , take the square root or cube root of both sides.
::当用正方形或立方体的变量解析方程式时,取两边的平方根或立方根。Taking the Square Root of Both Sides
::攻占双方的平方根Squares and square roots have an inverse relationship. To solve for a squared variable, take the square root.
::平方和平方根有反向关系。 要解决平方变量, 请选择平方根 。Example
::示例示例示例示例Solve x 2 = 25.
::解决 x2=25 。Take the square root of both sides and simplify:
::以两边的平方根为基点,x 2 = 25 √ x 2 = √ 25 x = √ 5 ⋅ 5 x = 5
::x2=25=25=x2=25x=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5=5Are any other numbers that when multiplied by itself results in 25?
::当乘以本身时,是否还有25个数字?Recall that the product of two negative numbers is positive, so ( − 5 ) 2 is also 25.
::回顾两个负数是正数,所以(-5)2 也是25。T here are two solutions to the equation x 2 = 25 , x = 5 and x = − 5.
::方程式 x2=25、 x=5 和 x5 有两个解决方案。Taking the Cube Root of Both Sides
::攻占两边的立方根Cubes and cube roots have an inverse relationship. To solve for a cubed variable, take the cube root.
::立方体和立方根有反向关系。 要解决立方体变量, 请选择立方根 。Example
::示例示例示例示例Solve x 3 = 27.
::解决 x3=27.Take the cube root of both sides of the equation and simplify:
::以方程式两侧的立方根为立方根并简化 :x 3 = 27 3 √ x 3 = 3 √ 27 x = 3 √ 3 ⋅ 3 ⋅ 3 x = 3
::x3=273x3=327x3=327x3=3_3_3x3x3=3A re any other numbers that when cubed results in 27?
::是否还有其他数字 当立方体在27中产生结果?If you try cubing -3, you get ( − 3 ) 3 = ( − 3 ) × ( − 3 ) × ( − 3 ) = − 27 not 27.
::如果尝试孵化 - 3, 你就会得到 (- 3) 3= (- 3) x (- 3) xx (- 3) x (- 3) x (- 3) x (- 3)\\\\\\ 27 而非 27 。T here is only one solution to the equation x 3 = 27 , x = 3.
::方程式 x3=27, x=3 只有一个解决方案。Remember this!
::记住这个!-
There are two methods to simplify square roots and cube roots:
::简化平方根和立方根有两种方法:
-
Taking Out Perfect Squares
(
Cubes):
I
dentify
the largest perfect square (cube) of the radicand and take the square (cube) root of it.
::消除完美广场(立方体):确定弧形的最大完美广场(立方体)并取其正方(立方体)根。 -
Prime Factorization: Write the prime factorization of the radicand and take the square (cube) root of groups of two
(
three) of the same factor.
::起始因子化:写出弧度的原始因子化,并选取相同因子的两组(三)的平方根(立方体)。
-
To solve an equation with a variable squared or cubed, take the square
(
cube) root of both sides and simplify using one of the two methods above.
::要用可变方形或立方体解析方程式,取两边的方根(立方体),并使用上述两种方法之一简化。
-
Write the prime factorization of the radicand.