章节大纲

  • Arbitrary digits. In the five digit number, x1, y3, z, where x, y, and z represents unknown digits. What is the largest number? x1, y3, z. If we want the largest number, we're going to put the largest digit in x. The largest digit is 9. Then for y, it's going to be an 8. For z, it's going to be a 7. So our largest number is 91,837. What's the smallest number? So we're going to rewrite x1, y3, z. Our smallest number means we're going to put our smallest digit on the left side. So it'd be 1, 1. Then 2 is our second smallest, and 3, and 4. 1, 1, 2, 3, 4. Our next question is what number is closest to 11,125? So we have x1, y3, z. Well, we want to get to 11,000. So we're going to put a 1 in our thousands. We want to get to 125. So we're going to put a 1 in our hundreds. And because we now have simplified this to 11,030 something where we have to figure out the z, we want to make it as close to 125 as possible. So we're going to set our z as 0. So this is going to be the number closest to 11,0125. So these are three answers.
    任意数字。在一个五位数 x1, y3, z 中,x、y 和 z 代表未知数字。求最大数。x1, y3, z。如果我们想要最大的数,我们将把最大的数字放在 x 的位置。最大的数字是 9。然后对于 y,它将是 8。对于 z,它将是 7。所以我们的最大数是 91,837。最小的数是多少?我们将重写 x1, y3, z。最小的数意味着我们将把最小的数字放在左边。所以是 1,1。然后 2 是我们第二小的数,然后是 3 和 4。1, 1, 2, 3, 4。我们的下一个问题是哪个数最接近 11,125?我们有 x1, y3, z。我们想要接近 11,000。所以我们将在千位放 1。我们想要接近 125。所以我们将在百位放 1。因为我们现在将它简化为 11,030 多的数,我们需要确定 z,我们想要它尽可能接近 125。所以我们将 z 设置为 0。所以这是最接近 11,125 的数。所以这是三个答案。