章节大纲

  • lesson content

    Simon has  3 4  of a pie left over from last night's dinner. He wants to take half of the remaining pie to his friend's house. How much pie is Simon taking with him? 
    ::西蒙想把剩下的一半派带去他朋友家 西蒙要和他一起吃多少馅饼?

    In this concept, you will learn how to multiply two fractions.
    ::在这个概念中,你会学会如何乘以两个分数。

    Multiplying Two Fractions
    ::乘法两个分数

    Multiplying fractions can be a little tricky to understand. When adding fractions, you are finding the  sum . When you subtracted fractions, you are finding the  difference . When  multiplying  a fraction by a whole number, you are finding the sum of a repeated fraction or a repeated group.
    ::乘法分数可能有点难以理解。在添加分数时,您正在找到总和。在减去分数时,您正在找到差数。在将一个分数乘以整数时,您正在找到一个重复分数或重复组数的和。

    When you multiply two fractions, it means that you are looking for a part of a part. Here is a multiplication problem with two fractions. 
    ::当乘以两个分数时,这意味着您正在寻找一个部分的一部分。这里有一个乘法问题,有两个分数。

    1 2 × 3 4 = _

    The product is one-half of three-fourths. Here is a diagram.
    ::产品是四分之三的一半。这是一张图表。

    3 4

    lesson content

    Three-fourths of the whole is shaded. To find one-half of the three-fourths,  divide  the entire diagram in half.
    ::整体的四分之三是阴影。要找到四分之三的一半,将整张图一分为二。

    lesson content

    The diagram is evenly divided into 8 parts. The shaded parts is divided into 6 parts. The gray shaded part represents half of the three-fourths. Therefore,  1 2  of  3 4 = 3 8 .
    ::图表平均分为8个部分,阴影部分分为6个部分,灰色部分占四分之三的一半,因此,3 4 = 3 8中的12个部分。

    You can’t always draw pictures to figure out a problem, so you can multiply fractions using a few simple steps.
    ::您不能总是绘制图片来找出问题, 这样您就可以使用几个简单的步骤来乘以分数 。

    To multiply two fractions, multiply the  numerator  by the numerator and the  denominator  by the denominator. 
    ::要乘以两个分数,将分子乘以分子,分母乘以分母。

     

    a b × c d = a × c b × d

    Here is an example.
    ::举一个例子。

    1 2 × 3 4 = _

    Multiply the first  numerator by the second numerator and multiply the first denominator by the second denominator.
    ::乘以第一个分子,乘以第二个分子,乘以第一个分母,乘以第二个分母。

      

    1 2 × 3 4 = 1 × 3 2 × 4 = 3 8

    The product is  3 8 . The answer is the same as the one found earlier.
    ::产品为3,8。答案与先前的相同。

    Let's look at another example.
    ::让我们再举一个例子。

    3 6 × 1 9 = _

    First, multiply the numerator by the numerator and the denominator by the denominator.
    ::首先,将分子乘以分子,分母乘以分母。

    3 × 1 6 × 9 = 3 54

    Next,  simplify  the fraction  3 54  by dividing by the   (GCF). The GCF of 3 and 54 is 3. 
    ::其次,简化第354项,除以(GCF),3和54的绿色气候基金为3。

    3 ÷ 3 54 ÷ 3 = 1 18

    The product is  1 18 .
    ::产品是1 18。

    To solve this problem, you multiplied and then simplified. Sometimes, you can simplify before multiplying. Let's look at the problem again.
    ::要解决这个问题, 您需要乘数, 然后简化 。 有时, 您可以在乘数之前简化 。 让我们再看一下问题 。

    3 6 × 1 9 = _

    There are two ways you can simplify this problem before multiplying.
    ::在乘法之前,有两种方法可以简化这个问题。

    1. Simplify any fractions that can be simplified.
      ::简化可以简化的任何分数 。

     Here three-sixths can be simplified to one-half. The new problem would be  1 2 × 1 9 = 1 18 .
    ::这里的六分之三可以简化为一半。 新的问题将是 1 2 × 1 9 = 1 18 。

    1. Cross simplify the fractions.  
      ::交叉简化分数。

    To  cross-simplify , simplify on the diagonals by using greatest common  factors  to simplify a numerator and an opposite denominator. 
    ::交叉简化,利用最共同的因素简化分子和对立分母,从而简化对角体。

    lesson content

    Look at the numbers on the diagonals and simplify any that you can. Now, 1 and 6 can not be simplified, but 3 and 9 have the GCF of 3.
    ::看看对角线上的数字, 并简化任何您可以简化的数字。 现在, 1 和 6 无法简化, 但3 和 9 全球合作框架为 3 。

    3 ÷ 3 = 1 9 ÷ 3 = 3

    Next, substitute the new numbers for the old ones and multiply. 
    ::接下来,用新数字代替旧数字,再乘法。

    1 6 × 1 3 = 1 18

    Notice that you can simplify three different ways, but will always end up with the same answer.
    ::请注意,您可以简化三种不同的方式,但最终总是得到相同的答案。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Simon and his pie.
    ::早些时候,你得到一个问题 关于西蒙和他的派。

    Simon is taking half of  3 4  of a pie to his friends house. Multiply one-half times  3 4  to find the  amount  of pie Simon is taking with him.
    ::西蒙拿了三块四分半的馅饼去朋友家 乘以五乘以三块四

    1 2 × 3 4 = _

    First, multiply the fraction. Find the product of the numerators over the product of the denominators. 
    ::首先,乘以分数。在分母的产物上找到分子的产物。

    1 × 3 2 × 4 = 3 8

    The fraction is in  simplest form .
    ::分数以最简单的形式出现。

    Simon is taking  3 8  of a pie with him to his friend's house. 
    ::西蒙带着三十八块馅饼去他朋友家

    Example 2
    ::例2

    Find the product. Answer in simplest form.
    ::找到产品,回答最简单

    3 7 × 2 3 = _

    First, multiply the numerator by the numerator and the denominator by the denominator. 
    ::首先,将分子乘以分子,分母乘以分母。

    3 × 2 7 × 3   =   6 21

    Then, simplify the fraction. Divide 6 and 21 by the GCF of 3.
    ::然后,简化分数。除以6和21,由全球合作框架的3除以6和21。

    6 ÷ 3 21 ÷ 3 = 2 7

    The product is  2 7 .
    ::产品为2 7。

    Example 3
    ::例3

    Find the product:  4 5 × 1 2 = _ . Answer in simplest form.
    ::查找产品: 4 5 × 1 2 = _. 回答最简单。

    First, multiply the numerator by the numerator and the denominator by the denominator.
    ::首先,将分子乘以分子,分母乘以分母。

    4 × 1 5 × 2 = 4 10

    Then, simplify the fraction. The GCF of 4 and 10 is 2.
    ::然后简化分数,全球合作框架4和10是2。

    4 10 = 2 5

    The product is  2 5 .
    ::产品为2 5。

    Example 4
    ::例4

    Find the product:  6 9 × 1 3 = _ . Answer in simplest form.
    ::查找产品: 6 9x1 3 = _. 回答最简单。

    First, simplify the fraction  6 9  and rewrite the problem. The GCF of 6 and 9 is 3.
    ::首先,简化第6部分9,重写问题,全球合作框架6和9是3。

    6 9 = 2 3

     

    2 3 × 1 3

    Then, multiply the numerator by the numerator and the denominator by the denominator.
    ::然后,将分子乘以分子,分母乘以分母。

     

    2 × 1 3 × 3 = 2 9

    The product is  2 9 .
    ::产品为2 9。

    Example 5
    ::例5

    Find the product:  5 6 × 2 3 = _ . Answer in simplest form.
    ::查找产品: 5 6 × 2 3 = _. 回答最简单。

    First, cross simplify the fractions. The GCF of 2 and 6 is 2. 
    ::首先,交叉简化分数,全球合作框架2和6是2。

    5 6 × 2 3 = 5 3 × 1 3

    Then, multiply the numerator by the numerator and the denominator by the denominator.
    ::然后,将分子乘以分子,分母乘以分母。

     

    5 × 1 3 × 3 = 5 9

    The product is  5 9 .

    ::产品为5 9。

    Review
    ::回顾

    Find the product. Answer in simplest form.
    ::找到产品,回答最简单

    1. 1 6 × 1 3 = _
    2. 1 4 × 1 2 = _
    3. 4 5 × 1 3 = _
    4. 6 7 × 1 2 = _
    5. 1 8 × 1 4 = _
    6. 2 3 × 1 4 = _
    7. 1 5 × 1 2 = _
    8. 2 5 × 3 6 = _
    9. 7 9 × 2 3 = _
    10. 8 9 × 3 4 = _
    11. 2 3 × 1 2 = _
    12. 4 7 × 2 14 = _
    13. 6 7 × 2 5 = _
    14. 4 9 × 1 2 = _
    15. 8 9 × 2 5 = _
    16. 3 8 × 2 3 = _

    Review (Answers) 
    ::回顾(答复)

    Click   to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源