Section outline

  • lesson content

    Jake and his 3 friends are working together to sell bird houses that they've made. They are selling the bird houses for $20 each and plan to divide up the money they make equally. If  b  represents the number of bird houses they sell, how could Jake write and simplify a  variable expression  that represents how much money he will make in  terms  of  b ?
    ::Jake和他的三个朋友正在共同努力出售他们建造的鸟屋。他们每家鸟屋出售20美元,并计划平均分配它们赚的钱。如果b表示它们卖的鸟屋数量,Jake怎么能写和简化一个代表他能赚多少钱的变数表达方式?

    In this concept, you will learn how to simplify terms within  variable  expressions using  integer   division .
    ::在此概念中,您将学会如何使用整数分隔来简化变量表达式中的术语。

    Simplifying Variable Expressions Involving Integer Division
    ::涉及整数分区的简化变量表达式

    Recall that a  variable expression  is a math phrase that has numbers, variables, and  operations  in it. Variable expressions are made up of  terms  that are separated by  addition  or  subtraction .
    ::回顾变量表达式是一个数学短语,其中含有数字、变量和操作。变量表达式由增加或减法分开的术语组成。

    Here is an example:
    ::以下是一个例子:

    24 x 3 + 18 x y
    ::24 x 3 + 18 x y

    In this variable expression there are two terms. The first  term  is  24 x 3  and the second term is  18 x y .
    ::在此变量表达式中有两个术语。 第一个术语为 24 x 3, 第二个术语为 18 x y 。

    Sometimes individual terms can be simplified if they contain more than one number or the same variable more than once.
    ::有时,个别术语如果不止一次包含一个数字或同一个变量,则可以简化。

    For example, in the variable expression above, the term  24 x 3  can be simplified. Let's look at how you would simplify it.
    ::例如,在以上变量表达式中,24 x 3 术语可以简化。让我们看看如何简化它。

    Remember that a  fraction bar  is the same as division. So  24 x 3  is the same as  24 x ÷ 3 . You will see expressions written in both ways. If the  expression  is not already in  fraction  form, it helps to rewrite it in fraction form.
    ::记住分数栏与分数栏相同。 所以 24 x 3 和 24 x {{{{{{} 3 相同。 您将会看到以两种方式书写的表达式。 如果表达式尚未以分数形式出现, 则有助于以分数形式重写它 。

    24 x 3
    ::24 x 3 24 x 3

    Your next step is to separate out the integers and variable in the numerator and the denominator.
    ::您的下一步是分离分子和分母中的整数和变量。

    24 x 3 = 24 x 3
    ::24 x 3 = 24 x 3

    Now, divide the integers within the term.
    ::现在,在术语内将整数除以。

    24 3 = 8

    There is only one  x  in the expression, so it will not change.
    ::表达式中只有一个 x, 所以它不会改变 。

    The answer is  24 x 3 = 8 x .
    ::答案是 24 x 3 = 8 x 。

    Let's look at another example where there is the same variable more than once.
    ::让我们再看看另一个例子,其中同一个变量不止一次。

    Simplify  24 y ÷ 2 y .
    ::简化 - 24 y = 2 y 。

    First, rewrite using a fraction bar.
    ::首先,使用分数条重写 。

    24 y ÷ 2 y = 24 y 2 y
    ::- 24 y = 2 y = - 24 y 2 y

    Next, separate out the integers and variables in the numerator and the denominator.
    ::下一步,将分子和分母中的整数和变量分开。

    24 y 2 y = 24 y 2 y
    ::- 24 y y = 24 y 2 y y

    Now, focus on the integers. Divide  24 2 . You know that  24 2 = 12  and a negative divided by a positive equals a negative.
    ::现在,关注整数。除以 - 24 2。 你知道24 2 = 12, 负除以正数等于负。

    24 2 = 12

    Next, look at the variables. There is a  y  in both the numerator and the denominator. Any number divided by itself is equal to 1, so  y y  is equal to 1. You might say that the  y 's “cancel out”.
    ::接下来,请看变量。在分子和分母中都有一个y。任何数字本身除以等于 1, y y 等于 1。 您可以说 y ' s " cancel out " 。

    24 y 2 y = 12 1 = 12
    ::- 24 y 2 y y = - 12 1 = 12

    The answer is  24 y ÷ 2 y = 12 .
    ::答案是 24 y y y 2 y y = 12 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Jake and his bird houses.
    ::早些时候,你得到一个问题 关于杰克和他的鸟屋。

    Jake and his three friends will sell  b  bird houses for $20 each and Jake wonders how much money he will make if he and his friends divide the money equally.
    ::Jake和他的三个朋友会卖B鸟屋 每家20美元,Jake想知道 如果他和他的朋友平分钱,他能赚多少钱。

    If Jake and his friends sell  b  bird houses at $20 each, they will make 20b dollars total. They will divide up that money four ways amongst the four friends. Each person will get:
    ::如果Jake和他的朋友每人卖B鸟屋20美元,他们总共就能赚20美元。他们将把这笔钱分成四大类。

    20 b 4
    ::20 b 4

    You can simplify this expression by dividing the integers. First, separate the integers from the variable:
    ::您可以通过分隔整数来简化此表达式。 首先,将整数从变量中分离出来:

    20 b 4
    ::20 b 4

    Now, focus on the integers. Divide  20 4 .
    ::现在,集中关注整数。除以 20 4 。

    20 4 = 5

    Next, look at the variable. There is only one  b , so it will not change.
    ::接下来,看看变量。只有一个 b,所以它不会改变。

    20 b 4 = 5 b
    ::20 b 4 = 5 b

    The answer is  20 b 4 = 5 b .
    ::答案是20 b 4 = 5 b 。

    Jake will make  5 b  dollars from selling the bird houses.
    ::杰克会从卖鸟屋赚5美元

    Example 2
    ::例2

    Simplify  18 a b ÷ 9 b .
    ::简化 - 18 a b = 9 b 。

    First, rewrite using a fraction bar.
    ::首先,使用分数条重写 。

    18 a b ÷ 9 b = 18 a b 9 b
    ::- 18个a b 9 b = - 18个a b 9 b

    Next, separate out the integers and variables in the numerator and the denominator.
    ::下一步,将分子和分母中的整数和变量分开。

    18 a b 9 b = 18 a b 9 b
    ::- 18个a b 9 b = 18 a b 9 b

    Now, focus on the integers. Divide  18 9 . You know that  18 9 = 2  and a negative divided by a positive equals a negative.
    ::现在,关注整数。除以 - 18 9 。 你知道18 9 = 2 和负除以正数等于负。

      18 9 = 2

    Next, look at the variables. There is a  b  in both the numerator and the denominator.  b b  is equal to 1. There is only one  a , so it will not change.
    ::接下来,请看变量。分子和分母中都有一个 b 。b b 等于 1 。只有一个 a , 所以它不会改变 。

    18 a b 9 b = 2 a 1 = 2 a
    ::- 18 a b b 9 b = 2 a = 1 = 2 a = 2 a = 2 a

    The answer is  18 a b ÷ 9 b = 2 a .
    ::答案是 - 18 a b = 9 b = - 2 a 。

    Example 3
    ::例3

    Simplify  14 a ÷ 7 .
    ::简化 - 14 a * _ 7 。

    First, rewrite using a fraction bar.
    ::首先,使用分数条重写 。

    14 a ÷ 7 = 14 a 7
    ::- 14 a = 7 = - 14 a = 7 = 14 a = 7

    Next, separate out the integers and variable in the numerator and the denominator.
    ::下一步,将分子和分母中的整数和变量分开。

    14 a 7 = 14 a 7
    ::- 14 a - 7 = - 14 a - 7

    Now, focus on the integers. Divide  14 7 . You know that  14 7 = 2  and a negative divided by a negative equals a positive.
    ::现在,关注整数。除以 - 14 - 7。你知道14 - 7= 2,负除以负等于正。

    14 7 = 2

    Next, look at the variable. There is only one  a , so it will not change.
    ::接下来,看看变量。只有一个一个,所以它不会改变。

    14 a 7 = 2 a
    ::- 14 a - 7 = 2 a

    The answer is  14 a ÷ 7 = 2 a .
    ::答案是 - 14 a * _ - 7 = 2 a 。

    Example 4
    ::例4

    Simplify  28 a b ÷ 7 b .
    ::简化 28 a b b b b = 7 b 。

    First, rewrite using a fraction bar.
    ::首先,使用分数条重写 。

    28 a b ÷ 7 b = 28 a b 7 b
    ::28 a b - 7 b = 28 a b -7 b

    Next, separate out the integers and variables in the numerator and the denominator.
    ::下一步,将分子和分母中的整数和变量分开。

    28 a b 7 b = 28 a b 7 b
    ::28 a b - 7 b = 28 a b - 7 b

    Now, focus on the integers. Divide  28 7 . You know that  28 7 = 4  and a positive divided by a negative equals a negative.
    ::现在,集中关注整数。除以 28 - 7。 你知道, 28 7 = 4, 正除以 负等于 负。

    28 7 = 4

    Next, look at the variables. There is a  b  in both the numerator and the denominator.  b b  is equal to 1. There is only one  a , so it will not change.
    ::接下来,请看变量。分子和分母中都有一个 b 。b b 等于 1 。只有一个 a , 所以它不会改变 。

    28 a b 7 b = 4 a 1 = 4 a
    ::28 ______________________________ b - 7 _____ b = - 4 _____ a 1 = 4 a = 4 a = 4 a = = 4 = = = = 4 = = = = = = = = = = = = = = = = = 4 = = = = = = = = = = = = = = = = = = = = = = = = = - = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    The answer is  28 a b ÷ 7 b = 4 a  .
    ::答案是28 a b = 7 b = 4 a 。

    Example 5
    ::例5

    Simplify  6 x ÷ 2 y .
    ::简化 - 6 x - 2 y 。

    First, rewrite using a fraction bar.
    ::首先,使用分数条重写 。

    6 x ÷ 2 y = 6 x 2 y
    ::- 6x______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Next, separate out the integers and variables in the numerator and the denominator.
    ::下一步,将分子和分母中的整数和变量分开。

    6 x 2 y = 6 x 2 y
    ::- 6 x - 2 y = - 6 + x - 2 y = - 6 + x - 2 y

    Now, focus on the integers. Divide  6 2 . You know that  6 2 = 3  and a negative divided by a negative equals a positive.
    ::现在,关注整数。除以 - 6 - 2。你知道, 6 2 = 3, 负除以负等于正。

    6 2 = 3

    Next, look at the variables. There is only one  x , so it will not change. There is only one  y , so it will not change.
    ::接下来,请看变量。只有一个 x,所以它不会改变。只有一个 y,所以它不会改变。

    6 x 2 y = 3 x y
    ::- 6 × x - 2 × y = 3 x y

    Notice that the  y  must stay in the denominator of the fraction!
    ::注意你必须留在分数的分母中!

    The answer is  6 x ÷ 2 y = 3 x y .
    ::答案是 - 6 x - 2 y = 3 x y 。

    Review
    ::回顾

    Simplify each variable expression.
    ::简化每个变量表达式。

    1. 36 t ÷ ( 9 )
      ::36 t (- 9)
    2. 56 n ÷ ( 7 )
      ::- 56n ( - 7)
    3. 22 n ÷ 11 n
      ::- 22 n _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    4. 28 n ÷ 7
      ::- 28 n 7
    5. 18 x y ÷ 2 x
      ::18xy y 2x
    6. 72 t ÷ ( 9 t )
      ::72 t (- 9 t )
    7. 48 x y ÷ ( 8 y )
      ::48 x y ( - 8 y)
    8. 54 x y ÷ ( 9 x y )
      ::54xy (- 9xy)
    9. 16 a ÷ ( 4 a )
      ::16 a (4 a )
    10. 16 a b ÷ ( 4 b )
      ::- 16 a b ( - 4 b)
    11. 99 x y ÷ ( 9 x )
      ::- 99xy (- 9x)
    12. 121 a ÷ ( 11 b )
      ::121 a (11 b)
    13. 144 x y ÷ ( 12 )
      ::- 144xy ( - 12)
    14. 169 y ÷ ( 13 x )
      ::- 169 y ( - 13 x )
    15. 225 x y ÷ ( 5 z )
      ::- 225 x y (5 z )

    Review (Answers)
    ::回顾(答复)