Section outline

  • A RICE chart allows chemists to keep track of the concentrations of different substances in a chemical reaction 1 . Cave formation is an example of a chemical reaction in nature. To form a cave, groundwater—which is a weak acid containing carbon dioxide dissolved in water—seeps into the ground and reacts with limestone. Once this mixture reaches the open air of the cave, the reaction reverses and a solid deposit of calcium carbonate is left behind, forming stalagmites and stalactites 2 .
    ::RICE 图表使化学家能够追踪化学反应中不同物质的浓度。 洞穴形成是化学反应的一个例子。 要形成洞穴,地下水(水中溶解的含二氧化碳的微弱酸)渗入地面,与石灰石发生反应。一旦这种混合物到达洞穴的露天空气,反应反射和碳酸钙的固体沉积就落在后面,形成炉渣和硫化物2。

    The result of a RICE chart for a chemical reaction with a weak acid is a quadratic equation , say, for instance,  x 2 + 10 - 5 x 10 - 6 = 0 . It  would be difficult to apply our earlier techniques to this equation . However, we have one more technique for solving quadratic equations in this section.
    ::RICE 微酸化学反应图表的结果是一个二次方程,例如, x2+10-5-5x-10-6=0。在这个方程上很难应用我们先前的技术。然而,我们在本节中还有一种解决二次方程的技术。

    lesson content

     

    Solving Quadratic Equations by the Quadratic Formula
    ::以二次曲线公式解决二次赤道等量

    The last way to solve a quadratic equation is by using the Quadratic Formula . This formula is derived by for the equation a x 2 + b x + c = 0 . We will derive the formula here.
    ::解析二次方程的最后方法就是使用二次方程式。 这个公式是用方程式 x2+bx+c=0 来推导的。 我们将在此得出公式 。

    Investigation: Deriving the Quadratic Formula
    ::调查:提出“四压公式”

    1. Move the constant to the right side of the equation:  a x 2 + b x = - c .
    ::1. 将常数移动到方程式的右侧:x2+bx=-c。

    2. Factor out  a from everything on the left side of the equation:  a ( x 2 + b a x ) = - c .
    ::2. 从方程左侧的所有东西(a(x2+bax)=-c)中计算出一个值。

    3. Complete the square using b a ( b 2 ) 2 = ( b a 2 ) 2 = ( b 2 a ) 2 = b 2 4 a 2 .
    ::3. 使用basadb2)2=(ba2)2=(b2a)2=(b2a)2=b24a2,完成广场。

    4. Add this expression to on the left side. On the right side, you need to multiply it by a (to account for the a outside the parentheses):  a ( x 2 + b a x + b 2 4 a 2 ) = - c + b 2 4 a .
    ::4. 向左侧添加此表达式。 在右侧, 您需要将其乘以一个( 用于括号外的计算): a( x2+bax+b24a2) =- c+b24a 。

    5. Factor the quadratic expression inside the " data-term="Parentheses" role="term" tabindex="0"> parentheses and find the common denominator on  the right-hand side:   a ( x + b 2 a ) 2 = b 2 4 a c 4 a .
    ::5. 将括号内的二次表达式乘以,在右侧找到共同分母sadx+b2a)2=b2-4ac4a。

    6. Divide both sides by a ( x + b 2 a ) 2 = b 2 4 a c 4 a 2 .
    ::6. 将双方除以asadx+b2a)2=b2-4ac4a2。

    7. Take the square root of both sides:  x + b 2 a = ± b 2 4 a c 2 a .
    ::7. 以两侧的平方根为平方根: x+b2ab2-4ac2a。

    8. Subtract b 2 a from both sides to get x by itself:  x = - b ± b 2 4 a c 2 a .
    ::8. 从两边减去b2a以获得x本身:x=-bb2-4ac2a。

    This formula can be used to solve any quadratic equation.
    ::此公式可用于解析任何二次方程 。

     How To Using the Quadratic Formula
    ::如何使用二次曲线公式

    1. Identify    a , b , and c  from a x 2 + b x + c = 0 .
    ::1. 从x2+bx+c=0中识别a、b和c。

    2. Substitute the values into the formula and simplify the expression. 
    ::2. 将数值替换为公式并简化表达式。

    x = - b ± b 2 4 a c 2 a
     
    ::x=-bb2-4ac2a

    by Mathispower4u demonstrates how to derive the quadratic formula.  
    ::由 Mathispower4u 演示如何得出二次方程式。

     

     

    Example 1
    ::例1

    Solve 2 x 2 x 15 = 0 .
    ::溶解 2x2 -x -15=0 。

    Solution:  Identify a,b, and c, and then substitute into the formula. 
    ::解决办法:确定a、b和c,然后替换成公式。

    x = 1 ± 1 2 4 ( 2 ) ( - 15 ) 2 ( 2 ) = 1 ± 1 + 120 4 = 1 ± 121 4 = 1 ± 11 4 = 12 4 , - 10 4 3 , - 5 2

    ::x=112-4(2)-152(2)(2)=11+1204=11214=1114=124,-1043,-52

    This video by CK-12 demonstrates how to use the quadratic formula to solve quadratic equations.
    ::CK-12的这段影片展示了如何使用二次方程式解决二次方程式。

     

    Example 2
    ::例2

    Solve 2 x 2 + 5 x 15 = - x 2 + 7 x + 2 using the Quadratic Formula.
    ::使用二次曲线公式解决 2x2+5x-15=-x2+7x+2。

    Solution:  Get everything onto the left side of the equation.
    ::解决方案:把所有东西都放在方程的左侧。

    2 x 2 + 5 x 15 = - x 2 + 7 x + 2 3 x 2 2 x 17 = 0

    ::2x2+5x-15=-x2+7x+23x2-2x-17=0

    Now, use a = 3 , b = - 2 , and c = - 17 and plug them into the Quadratic Formula.
    ::现在,使用a=3,b=2,和c=17,并插入二次曲线公式。

    x = - ( - 2 ) ± ( - 2 ) 2 4 ( 3 ) ( - 17 ) 2 ( 3 ) = 2 ± 4 + 204 6 = 2 ± 208 6 = 2 ± 4 13 6 = 1 ± 2 13 3

    ::x=(-2)-(-2)-(-2)-(-2)-2-4(3)(-17)-(3)-(3)-(7)-2(3)=(2)-4+2046=(2)-2086=(2)-2086=(2)-4136=(1)/2133)

    by Tyler Wallace demonstrates how to use the quadratic formula to solve quadratic equations.  
    ::泰勒·华莱士展示了如何使用二次方程式解决二次方程式。

     

    Example 3
    ::例3

    Solve 9 x 2 30 x 24 = 0 using the Quadratic Formula.
    ::使用二次曲线公式解决 9x2- 30x- 24=0 。

    Solution: First make sure one side of the equation is zero. Then find a , b , and c . a = 9 , b = - 30 , c = - 24 . Now, plug the values into the formula and solve for x .
    ::解决方案 : 首先确保方程式的一面为零。 然后找到 a, b, 和 c. a= 9, b= 30, c= 24。 现在, 将值插入公式中, 并解决 x 。

    x = ( - 30 ) ± ( - 30 ) 2 4 ( 9 ) ( - 24 ) 2 ( 9 ) = 30 ± 900 + 864 18 = 30 ± 1 , 764 18 = 30 ± 42 18 = 4 , - 2 3

    ::x( 30) ( 30) ( 30) 2- 4( 9) (9)( 242( 9) = 30900+86418= 301, 76418= 30 4218=4, 23

     

    Example 4
    ::例4

    The result of a RICE chart for a chemical reaction with a weak acid is a quadratic equation, say for instance,  x 2 + 10 - 5 x 10 - 6 = 0 . Determine the amount of the substance,  x.
    ::RICE 与微酸发生化学反应的 RICE 图表的结果是一个二次方程,例如 x2+10-5x-10-6=0。确定物质的数量, x。

    Solution:  Note  a = 1 , b = 10 - 5  and  c = 10 6 . Substituting these values into the quadratic formula yields
    ::溶液:注a=1,b=10-5和c10-6。

    x = - 10 - 5 ± ( 10 - 5 ) 2 4 ( 1 ) ( - 10 - 6 ) 2 ( 1 ) = - 10 - 5 ± 10 - 10 + 4 × 10 - 6 2 = - 10 - 5 ± 4.0001 × 10 - 6 2 = - 10 - 5 ± 2.000025 × 10 - 3 2 = - 10 - 5 + 2.000025 × 10 - 3 2 reject negative solution, amount is positive = 1.990025 × 10 - 3 2 = 9.950125 × 10 - 4

    ::x=-10-5-(10-5)2-4-4(1)(-10-6)2(1)=----5-10-10-10+4x10-10-62=-10-5-00.0001x10-62=-5-0.0010-62=--5-2.0025x10-32=----5-5+2.000025x10-32-反转负溶液,正数=1.990025x10-32-32=9.950125x10-4

       WARNINGS
    ::警告

    • If  b is negative, remember to change the sign in the 1st term in the formula:  b = - 2 - b = - ( - 2 ) = 2 .
      ::如果 b 是 负, 则记住更改公式中第一学期的符号 : b=-2 - b=- (-2)= 2。
    • Divide both terms by 2 a
      ::将两个条件除以 2a。
    • a, b,  and  c represent the coefficients. Do not include the variable with them. 
      ::a、b和c 表示系数,不包括变量。
    • Simplify the radical 1st, then reduce the fraction .  
      ::简化1号基体,然后降低分数。

    Summary
    ::摘要

    • To solve quadratic equations using the quadratic formula, identify the coefficients in the equation and then substitute those values into the formula:  x = - b ± b 2 4 a c 2 a
      ::使用二次方程解决二次方程,确定方程中的系数,然后将这些数值替换成公式:x=-bb2-4ac2a。

    Review
    ::回顾

    Solve the following equations using the Quadratic Formula:
    ::使用二次曲线公式解决下列方程式:

    1.  x 2 + 8 x + 9 = 0
    ::1. x2+8x+9=0

    2.  - 2 x 2 + x + 5 = 0
    ::2. -2x2+x+5=0

    3.   3 x 2 = - 4 x + 5
    ::3. 3x2=-4x+5

    4.   x 2 + 5 x 150 = 0
    ::4. x2+5x-150=0

    5.   8 x 2 = 2 x + 3
    ::5. 8x2=2x+3

    6.   - 5 x 2 + 18 x 24 = 0
    ::6.5x2+18x-24=0

    7.  10 x 2 + x 2 = 0
    ::7. 10x2+x-2=0

    8.  x 2 + 4 = 16 x
    ::8. x2+4=16x

    9.  4 x 2 + 20 x + 25 = 0
    ::9. 4x2+20x+25=0

    10.  x 2 18 x 63 = 0
    ::10. x2-18x-63=0

    Explore More
    ::探索更多

    1. The profit on your fundraiser is represented by the quadratic expression  - 3 p 2 + 200 p 3 , 000 , where p is your price point. What is your break-even point (i.e., the price point at which you will begin to make a profit)? Hint: Set the equation equal to zero.
    ::1. 您筹款人的利润由四边表达式 - 3p2+200p- 3,000表示, p是您的价格点。 您的收支平衡点( 即您开始盈利的价格点) 是什么 ? 提示 : 将方程式设为零 。

    2. A plane travels at a speed of 160 mph in calm air. Flying with a tailwind, the plane is clocked over a distance of 550 miles. Flying against a headwind, it takes 2 hours longer to complete the return trip. What was the wind velocity? (Round your answer to the nearest tenth.)
    ::2. 飞机飞行速度为160英里,在平静的空气中飞行速度为160英里,飞行时有尾风,飞行时长为550英里,飞行时长为2小时,完成返回旅行需要2小时。 风速是多少? (你对最近的10英里的答复是多少? )

    3. You want to build a fence around your rectangular yard. The area of your yard is 3,860 ft 2 . The width of your neighbor's  yard is 7 feet longer than the length of your yard. What are the dimensions of your yard? Round your answer to the nearest hundredth.  
    ::3. 您想在您的长方形院子周围修建一道栅栏,您的院子面积为3 860平方英尺。您的邻居院子宽度比您的院子长7英尺。您的院子的尺寸是多少? 您的院子的尺寸是多少? 将您的答案绕到最近的100英尺处 。

    4.  Robert stands on the topmost tier of bleachers in a gymnasium, and throws a basketball out onto the basketball court with a vertical upward velocity of 60 ft/s. The ball is 50 feet above the ground at the moment he releases the ball. When does the ball land?
    ::4. 罗伯特站在健身房最顶端的露天机上,向篮球场投掷篮球,垂直向上速度为60英尺/秒,球在球发球时在地上方50英尺处,球何时落地?

    5. Find the sum and the product of the two solutions x = - b ± b 2 4 a c 2 a . Note how this relates to how we solve a quadratic equation by factoring.  
    ::5. 找出两种溶液x=-bb2-4ac2a的总和和产品,注意这与我们如何通过保理处理四方方程式有何关系。

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix. 
    ::请参看附录。

    References
    ::参考参考资料

    1. "RICE Chart," last edited March 1, 2017,
    ::1. 2017年3月1日编辑的“RICE图表”,

    2. " How Caves Form | Caves and Karst | Foundations of the Mendips," by British Geological Survey Natural Environment Research Council, 2017,
    ::2. “洞穴如何形成 洞穴和门底ps的卡斯特基金会”,英国地质调查局自然环境研究理事会,2017年,