参数反函数
Section outline
-
Introduction
::导言A graph and its inverse are reflections of each other across the line
::图表及其反射是横跨y=x线的反射。To find an inverse algebraically, you can substitute for and then solve for are based on a 3rd variable, so we need to explore how to find the inverse of parametric equations.
::要找到反代数, 您可以用 x 代替 y, 然后用 y. 解决问题, 以第三个变量为基础, 所以我们需要探索如何找到对应方程的反义 。Is the inverse of a function always a function?
::函数的反向总是函数吗 ?Parametric Inverses
::参数反函数To find the inverse of a parametric equation , you must switch the function for with the function for This will switch all the points from to and also have the effect of visually reflecting the graph over the line
::要找到参数方程的反向, 您必须用 y 函数切换 x 的函数。 这将将所有点从 (x, y) 切换到 (y, x) , 并具有在 y =x 线上直观反映图形的效果 。Similar to the inverses of regular functions, the inverses of parametric equations are often restricted so they are also functions. Take the following parametric equations:
::与正常函数的反差相似,参数方程的反差往往受到限制,因此它们也是函数。
::x=2ty=t2-4To find and graph the inverse of the parametric function on the domain first switch the and functions and graph.
::要查找和图形显示域- 2 < t < 2, 先切换 x 和 y 函数和图形上的参数函数的反向 。
::x=t2 - 4y=2tThe original function is shown in blue and the inverse is shown in red.
::原函数以蓝色显示,反面以红色显示。Play, Learn, and Explore Parametric Inverses:
::播放、学习和探索参数反差:The following video shows how to graph parametric equations using the TI-84:
::以下视频展示了如何用TI-84来绘制参数方程图:In Desmos, graphing a parametric equation is as easy as plotting an ordered pair. Instead of numerical coordinates, you'll need to use expressions in terms of t, such as
::在 Desmos 中, 绘制参数方程式的图解和绘制定购对方图一样容易。 您需要使用 t 的表达式, 如( cost, sint) , 而不是数字坐标 。The following video demonstrates how to graph parametric equations using Desmos:
::以下影片展示了如何用德摩斯绘制参数方程图:Examples
::实例Example 1
::例1Does the coordinate point (4, 8) satisfy the following function or its inverse?
::坐标点(4,8)是否满足下列函数或其反函数?
::x=2t2--2y=t2-2-1Solution:
::解决方案 :Substitute the point into the original function and solve for .
::将点替换为 t.x=2t2-2-2andy=t2-14=2t2-2-28=t2-16=2t29=t23=t2&3=t3=tSince the value solved for differs, the point does not satisfy the original function.
::由于 t 的解析值不同,该点不符合原始函数。Substitute the point into the inverse and solve for .
::将 t. x=t2 - 1andy=2t2 - 24=t2 - 18=2t2 - 25=t210=2t2&2=5=t5=t2+5=t2=t2=t2+5=tSint t的倒数和解算点替换为 t. x=t2 - 1andy=2t2 - 24=t2 - 18=2 - 2t2=2- 25=t2=210=2t2t2&5=t5=t2+5=tSince t的解算值是相同的, 点满足了反函数 。Example 2
::例2Parameterize the following function and then graph the function and its inverse:
::参数化以下函数,然后绘制函数及其反向图示:
::y=x2+x- 4 y=x2+x- 4Solution:
::解决方案 :For the original function, the parameterization is
::对于原始函数,参数化是
::x=ty=t2+t-4。The inverse is
::倒数是
::x=t2+t-4y=t.Example 3
::例3Find the points of intersection of the function and its inverse from Example 2.
::从例2中查找函数的交叉点及其反向。Solution:
::解决方案 :The parameterized function is
::参数化函数为 x1=ty1=t2+t-4。 逆值为
::x2=t2+t-4y2=t.An intersection for two sets of parametric equations happens when the points exist at the same , and To find where these intersect, set and and solve.
::两组参数方程式的交叉点发生于点位于相同的 x、y 和 t。 要找到这些交叉点的位置, 请设置 x1=x2 和 y1=y2 并解析 。
::t = t2+t- 4t2=4t2You can tell from the graph in Example 2 that there seem to be four points of intersection. Since can mean time, the question of intersection is more complicated than simply overlapping. It means that the points are at the same and coordinate at the same time. Note what the graphs look like when
::您可以从例2中的图表中看到,似乎有四个十字路口点。由于时间不代表时间,十字路口问题比简单的重叠复杂得多。这意味着各点同时处于相同的 x - 和 y - 坐标。请注意当- 1. 8 < 1. 8 < 1. 8 时这些图表的外观。Note what the graphs look like when or .
::注意图在 t>2.2 或 t2.2 时看起来像什么。Notice how when these partial graphs are examined, there is no intersection at anything besides and the points (2, 2) and (-2, -2). While the paths of the graphs intersect in four places, they intersect at the same time only twice.
::当检查这些部分图表时, 注意除了 t2 和点(2, 2) 和点(2, 2) 和点(2, 2) 外, 没有其他任何处没有交叉点, 虽然图形的路径在四个地方交叉, 但同时它们只交叉两次 。Example 4
::例4Recall the question from the Introduction: Is the inverse of a function always a function?
::回顾导言中的问题:函数的反向总是函数吗?Solution:
::解决方案 :The inverse of a function is not always a function. To see whether the inverse of a function will be a function, you must perform the horizontal line test on the original function. If the function passes the horizontal line test, then the inverse will be a function. If the function does not pass the horizontal line test, then the inverse produces a relation rather than a function. To find the inverse of a parametric equation, switch the function with the function.
::函数的反向不一定总是函数。要查看函数的反向是否是一个函数,您必须在原始函数上进行水平线测试。如果函数通过水平线测试,则反向为函数。如果函数没有通过水平线测试,则反向产生关系而不是函数。要找到参数方程的反向,请用 Y 函数切换 x 函数。Example 5
::例5Does the coordinate point (-2, 6) satisfy the following function or its inverse?
::坐标点 (-2, 6) 是否满足以下函数或其反函数? x=t2 - - 10y=t2 - 4Solution:
::解决方案 :Substitute the point into the original function and solve for .
::将点替换为 t.-2=t2=t2-10和6=t2-48=t210=t222=t20=tSince the value solved for differs, the point does not satisfy the original function.
::由于 t 的解析值不同,该点不符合原始函数。Substitute the point into the inverse and solve for .
::将点替换为 t. 6= t2 - 10 和 - 2= t2 - 616= t24= t2+4= t8= t 由于 t. 的解析值不同, 该点也不符合反函数 。Example 6
::例6Identify where the following parametric function intersects with its inverse.
::确定下列参数函数与其反向相交之处。
::x=4tx=4吨
::y=t2-16Solution:
::解决方案 :The inverse is
::x2 = t2 - 16y2 = 4t. solve for t 当 x1=x2 和 y1=y2 时, 倒数为 x2 = 16y2 = 4t. solve for t。
::4t=t2-160=t2-4t-16t=416-41(-16)2=4802=4452=225The points that correspond to these two times are
::与这两次对应的点数是
::x=4(2+25),y=(2+25),y=(2+25),y=16x=4(2 -25),y=(2 - 25),y=16。Summary
::摘要-
Two functions are
inverses
if for every point
on the 1st function, there exists a point
on the 2nd function.
::如果对于第一个函数的每一个点(a,b),在第二个函数上存在一个点(b,a),则两个函数是反向的。 -
An
intersection
for two sets of parametric equations happens when the points exist at the same
and
::两组参数方程式的交叉点发生于点点位于相同的x、y和t。
Review
::回顾Use the function for numbers 1-3 below.
::使用函数 x=t- 4; y=t2+2, 用于以下数字 1-3 。1. Find the inverse of the function.
::1. 查找函数的反向。2. Does the coordinate point (-2, 6) satisfy the function or its inverse?
::2. 协调点(-2,6)是否满足该功能或其反向?3. Does the coordinate point (0, 1) satisfy the function or its inverse?
::3. 坐标点(0,1)是否满足该函数或其反向?Use the relation for 4-6 below.
::使用关系 x=t2;y=4-t 用于以下 4-6 。4. Find the inverse of the relation.
::4. 找出这种关系的反面。5. Does the coordinate point (4, 0) satisfy the relation or its inverse?
::5. 坐标点(4,0)是否满足关系或其反差?6. Does the coordinate point (0, 4) satisfy the relation or its inverse?
::6. 坐标点(0, 4)是否满足关系或其反差?Use the function for 7-9.
::7- 9 使用函数 x=2t+1; y=t2- 3。7. Find the inverse of the function.
::7. 查找函数的反向。8. Does the coordinate point (1, 5) satisfy the function or its inverse?
::8. 协调点(1,5)是否满足该功能或其反向?9. Does the coordinate point (9, 13) satisfy the function or its inverse?
::9. 坐标点(9,13)是否满足该函数或其反差?Use the function for 10-11.
::10- 11 时使用函数 x=3t+14;y=t2-2t。10. Find the inverse of the function.
::10. 查找函数的反向。11. Identify where the parametric function intersects with its inverse.
::11. 查明参数函数与其反相交错之处。Use the relation for 12-13.
::在 12- 13 中使用关系 x= t2;y= 4t- 4。12. Find the inverse of the relation.
::12. 找出相互关系的反面。13. Identify where the relation intersects with its inverse.
::13. 查明关系与其反向交错之处。14. Parameterize and then graph the function and its inverse.
::14. 参数f(x)=x2+x-6,然后绘制函数及其反向图。15. Parameterize and then graph the function and its inverse.
::15. f(x)=x2+3x+2的参数,然后绘制函数及其反向图。Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Two functions are
inverses
if for every point
on the 1st function, there exists a point
on the 2nd function.