Section outline

  • Introduction
    ::导言

    A graph and its inverse are reflections of each other across the line y = x .  
    ::图表及其反射是横跨y=x线的反射。

    To find an inverse algebraically, you can substitute   x  for  y  and then solve for  y .    are based on a 3rd variable, so   we need to explore how to find the inverse of parametric equations.  
    ::要找到反代数, 您可以用 x 代替 y, 然后用 y. 解决问题, 以第三个变量为基础, 所以我们需要探索如何找到对应方程的反义 。

    Is the inverse of a function always a function?
    ::函数的反向总是函数吗 ?

    Parametric Inverses
    ::参数反函数

    To find the inverse of a parametric equation , you must switch the function for  x with the function for  y . This will switch all the points from ( x , y ) to ( y , x ) , and also have the effect of visually reflecting the graph over the line y = x .
    ::要找到参数方程的反向, 您必须用 y 函数切换 x 的函数。 这将将所有点从 (x, y) 切换到 (y, x) , 并具有在 y =x 线上直观反映图形的效果 。

    Similar to the inverses of regular functions, the inverses of parametric equations are often restricted so they are also functions. Take the following parametric equations:
    ::与正常函数的反差相似,参数方程的反差往往受到限制,因此它们也是函数。

    x = 2 t y = t 2 4

    ::x=2ty=t2-4

    To find and graph the inverse of the parametric function on the domain 2 < t < 2 ,  first switch the  x  and  y  functions and graph. 
    ::要查找和图形显示域- 2 < t < 2, 先切换 x 和 y 函数和图形上的参数函数的反向 。

    x = t 2 4 y = 2 t

    ::x=t2 - 4y=2t

    The original function is shown in blue and the inverse is shown in red.
    ::原函数以蓝色显示,反面以红色显示。

    Play, Learn, and Explore Parametric Inverses: 
    ::播放、学习和探索参数反差:

    The following video  shows how to graph parametric equations using the TI-84:
    ::以下视频展示了如何用TI-84来绘制参数方程图:

     

    In Desmos, graphing a parametric equation is as easy as plotting an ordered pair. Instead of numerical coordinates, you'll need to use expressions in terms of t,  such as  ( cos t , sin t ) .
    ::在 Desmos 中, 绘制参数方程式的图解和绘制定购对方图一样容易。 您需要使用 t 的表达式, 如( cost, sint) , 而不是数字坐标 。

    The following video  demonstrates how to graph parametric equations using Desmos: 
    ::以下影片展示了如何用德摩斯绘制参数方程图:

     

    Examples
    ::实例

    Example 1
    ::例1

    Does the coordinate point (4, 8) satisfy the following function or its inverse?
    ::坐标点(4,8)是否满足下列函数或其反函数?

    x = 2 t 2 2 y = t 2 1

    ::x=2t2--2y=t2-2-1

    Solution:
    ::解决方案 :

    Substitute the point into the original function and solve for t .

    x = 2 t 2 2 and y = t 2 1 4 = 2 t 2 2 8 = t 2 1 6 = 2 t 2 9 = t 2 3 = t 2 ± 3 = t ± 3 = t

    ::将点替换为 t.x=2t2-2-2andy=t2-14=2t2-2-28=t2-16=2t29=t23=t2&3=t3=t

    Since the value solved for t  differs, the point does not satisfy the original function.
    ::由于 t 的解析值不同,该点不符合原始函数。

    Substitute the point into the inverse and solve for t

    x = t 2 1 and y = 2 t 2 2 4 = t 2 1 8 = 2 t 2 2 5 = t 2 10 = 2 t 2 ± 5 = t 5 = t 2 ± 5 = t
    Since the value solved for t  is the same, the point satisfies the inverse function. 
    ::将 t. x=t2 - 1andy=2t2 - 24=t2 - 18=2t2 - 25=t210=2t2&2=5=t5=t2+5=t2=t2=t2+5=tSint t的倒数和解算点替换为 t. x=t2 - 1andy=2t2 - 24=t2 - 18=2 - 2t2=2- 25=t2=210=2t2t2&5=t5=t2+5=tSince t的解算值是相同的, 点满足了反函数 。

    Example 2
    ::例2

    Parameterize the following function and then graph the function and its inverse:
    ::参数化以下函数,然后绘制函数及其反向图示:

    y = x 2 + x 4

    ::y=x2+x- 4 y=x2+x- 4

    Solution:
    ::解决方案 :

    For the original function, the parameterization is
    ::对于原始函数,参数化是

    x = t y = t 2 + t 4.

    ::x=ty=t2+t-4。

    The inverse is
    ::倒数是

    x = t 2 + t 4 y = t .

    ::x=t2+t-4y=t.

    lesson content

    Example 3
    ::例3

    Find the points of intersection of the function and its inverse from Example 2.
    ::从例2中查找函数的交叉点及其反向。

    Solution:
    ::解决方案 :

    The parameterized function is 

    x 1 = t y 1 = t 2 + t 4.
     The inverse is
    ::参数化函数为 x1=ty1=t2+t-4。 逆值为

    x 2 = t 2 + t 4 y 2 = t .

    ::x2=t2+t-4y2=t.

    An intersection  for two sets of parametric equations happens when the points exist at the same  x , y , and  t .  To find where these intersect, set  x 1 = x 2  and  y 1 = y 2  and solve.
    ::两组参数方程式的交叉点发生于点位于相同的 x、y 和 t。 要找到这些交叉点的位置, 请设置 x1=x2 和 y1=y2 并解析 。

    t = t 2 + t 4 t 2 = 4 t = ± 2

    ::t = t2+t- 4t2=4t2

    You can tell from the graph in Example 2 that there seem to be four points of intersection. Since t can mean time, the question of intersection is more complicated than simply overlapping. It means that the points are at the same x and y coordinate at the same time. Note what the graphs look like when 1.8 < t < 1.8.
    ::您可以从例2中的图表中看到,似乎有四个十字路口点。由于时间不代表时间,十字路口问题比简单的重叠复杂得多。这意味着各点同时处于相同的 x - 和 y - 坐标。请注意当- 1. 8 < 1. 8 < 1. 8 时这些图表的外观。

    Note what the graphs look like when  t > 2.2  or t < 2.2 .
    ::注意图在 t>2.2 或 t2.2 时看起来像什么。

    Notice how when these partial graphs are examined, there is no intersection at anything besides t = ± 2 and the points (2, 2) and (-2, -2). While the paths of the graphs intersect in four places, they intersect at the same time only twice.
    ::当检查这些部分图表时, 注意除了 t2 和点(2, 2) 和点(2, 2) 和点(2, 2) 外, 没有其他任何处没有交叉点, 虽然图形的路径在四个地方交叉, 但同时它们只交叉两次 。

    Example 4
    ::例4

    Recall the question from the Introduction: Is the inverse of a function always a function?
    ::回顾导言中的问题:函数的反向总是函数吗?

    Solution:
    ::解决方案 :

    The inverse of a function is not always a function. To see whether the inverse of a function will be a function, you must perform the horizontal line test on the original function. If the function passes the horizontal line test, then the inverse will be a function. If the function does not pass the horizontal line test, then the inverse produces a relation rather than a function. To find the inverse of a parametric equation, switch the  x  function with the  y  function.
    ::函数的反向不一定总是函数。要查看函数的反向是否是一个函数,您必须在原始函数上进行水平线测试。如果函数通过水平线测试,则反向为函数。如果函数没有通过水平线测试,则反向产生关系而不是函数。要找到参数方程的反向,请用 Y 函数切换 x 函数。

    Example 5
    ::例5

    Does the coordinate point (-2, 6) satisfy the following function or its inverse?

    x = t 2 10 y = t 2 4

    ::坐标点 (-2, 6) 是否满足以下函数或其反函数? x=t2 - - 10y=t2 - 4

     

    Solution:
    ::解决方案 :

    Substitute the point into the original function and solve for t .

    2 = t 2 10 and 6 = t 2 4 8 = t 2 10 = t 2 ± 2 2 = t 20 = t

    ::将点替换为 t.-2=t2=t2-10和6=t2-48=t210=t222=t20=t

    Since the value solved for t  differs, the point does not satisfy the original function.
    ::由于 t 的解析值不同,该点不符合原始函数。

    Substitute the point into the inverse and solve for t

    6 = t 2 10 and 2 = t 2 6 16 = t 2 4 = t 2 ± 4 = t 8 = t
    Since the value solved for t  differs, the point does not satisfy the inverse function either. 
    ::将点替换为 t. 6= t2 - 10 和 - 2= t2 - 616= t24= t2+4= t8= t 由于 t. 的解析值不同, 该点也不符合反函数 。

     

    Example 6
    ::例6

    Identify where the following parametric function intersects with its inverse.
    ::确定下列参数函数与其反向相交之处。

                                                          x = 4 t
    ::x=4tx=4吨

                                                          y = t 2 16
    ::y=t2-16

    Solution:
    ::解决方案 :

    The inverse is 

    x 2 = t 2 16 y 2 = 4 t .
    Solve for t  when  x 1 = x 2  and  y 1 = y 2 .
    ::x2 = t2 - 16y2 = 4t. solve for t 当 x1=x2 和 y1=y2 时, 倒数为 x2 = 16y2 = 4t. solve for t。

    4 t = t 2 16 0 = t 2 4 t 16 t = 4 ± 16 4 1 ( 16 ) 2 = 4 ± 80 2 = 4 ± 4 5 2 = 2 ± 2 5

    ::4t=t2-160=t2-4t-16t=416-41(-16)2=4802=4452=225

    The points that correspond to these two times are
    ::与这两次对应的点数是

    x = 4 ( 2 + 2 5 ) ,   y = ( 2 + 2 5 ) 2 16 x = 4 ( 2 2 5 ) ,   y = ( 2 2 5 ) 2 16.

    ::x=4(2+25),y=(2+25),y=(2+25),y=16x=4(2 -25),y=(2 - 25),y=16。

    Summary
    ::摘要

    • Two functions are  inverses  if for every point  ( a , b )  on the 1st function, there exists a point  ( b , a )  on the 2nd function.
      ::如果对于第一个函数的每一个点(a,b),在第二个函数上存在一个点(b,a),则两个函数是反向的。
    • An intersection for two sets of parametric equations happens when the points exist at the same  x , y ,  and  t .
      ::两组参数方程式的交叉点发生于点点位于相同的x、y和t。

    Review
    ::回顾

    Use the function x = t 4 ;   y = t 2 + 2  for numbers 1-3 below.
    ::使用函数 x=t- 4; y=t2+2, 用于以下数字 1-3 。

    1. Find the inverse of the function.
    ::1. 查找函数的反向。

    2. Does the coordinate point (-2, 6) satisfy the function or its inverse?
    ::2. 协调点(-2,6)是否满足该功能或其反向?

    3. Does the coordinate point (0, 1) satisfy the function or its inverse?
    ::3. 坐标点(0,1)是否满足该函数或其反向?

     

    Use the relation x = t 2 ;   y = 4 t  for 4-6 below.
    ::使用关系 x=t2;y=4-t 用于以下 4-6 。

    4. Find the inverse of the relation.
    ::4. 找出这种关系的反面。

    5. Does the coordinate point (4, 0) satisfy the relation or its inverse?
    ::5. 坐标点(4,0)是否满足关系或其反差?

    6. Does the coordinate point (0, 4) satisfy the relation  or its inverse?
    ::6. 坐标点(0, 4)是否满足关系或其反差?

     

    Use the function x = 2 t + 1 ;   y = t 2 3  for 7-9.
    ::7- 9 使用函数 x=2t+1; y=t2- 3。

    7. Find the inverse of the function.
    ::7. 查找函数的反向。

    8. Does the coordinate point (1, 5) satisfy the function or its inverse?
    ::8. 协调点(1,5)是否满足该功能或其反向?

    9. Does the coordinate point (9, 13) satisfy the function or its inverse?
    ::9. 坐标点(9,13)是否满足该函数或其反差?

     

    Use the function x = 3 t + 14 ;   y = t 2 2 t for 10-11.
    ::10- 11 时使用函数 x=3t+14;y=t2-2t。

    10. Find the inverse of the function.
    ::10. 查找函数的反向。

    11. Identify where the parametric function intersects with its inverse.
    ::11. 查明参数函数与其反相交错之处。

     

    Use the relation  x = t 2 ;   y = 4 t 4  for 12-13.
    ::在 12- 13 中使用关系 x= t2;y= 4t- 4。

    12. Find the inverse of the relation.
    ::12. 找出相互关系的反面。

    13. Identify where the relation intersects with its inverse. 
    ::13. 查明关系与其反向交错之处。

    14. Parameterize f ( x ) = x 2 + x 6  and then graph the function and its inverse.
    ::14. 参数f(x)=x2+x-6,然后绘制函数及其反向图。

    15. Parameterize  f ( x ) = x 2 + 3 x + 2  and then graph the function and its inverse.
    ::15. f(x)=x2+3x+2的参数,然后绘制函数及其反向图。

    Review (Answers) 
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。