章节大纲

  • Lesson Objectives
    ::经验教训目标

    • Identify the end behavior of a function based on the degree and coefficient .
      ::根据程度和系数确定函数的最终行为。
    • Understand how the multiplicity of a factor affects the behavior of the graph of a polynomial at its x - intercept .
      ::了解一个因素的多重性 如何影响多面形图 X 界面的图形行为 。
    • Determine the intervals where a polynomial is positive and negative.
      ::确定多面体为正和负的间隔。
    • Graph a polynomial function .
      ::图形多面函数。
    • Compare the properties of two quadratics in the different forms.  
      ::比较两种不同形式的二次方位的特性。

    Introduction: Characteristics of Polynomial Functions
    ::导言:多功能的特点

    Use the interactive below to explore how the a  coefficient and the degree determine the shape of a polynomial.
    ::利用下面的交互作用来探讨系数和程度如何决定多元数值的形状。

    INTERACTIVE
    Graphing Polynomials
    minimize icon
    • Use the sliders to change the leading coefficient  ( a )  and degree  ( n )  .
      ::使用滑动符改变主要系数(a)和程度否
    • Notice how  using the sliders to change the values of   a  and   n  impacts the shape and position of the graph.
      ::注意使用滑动符改变 n 和 n 的值如何影响图形的形状和位置。
    • Drag the screen to pan and zoom the graph.
      ::拖曳屏幕以调色板并缩放图形。


    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No
    Progress
    0 / 2
    1.

    Complete the table to describe the end behavior rules of polynomials ("up" or "down"):
    ::完成用于描述多面形(“上”或“下”)最终行为规则的表格 :

    @$\begin{align*}a\end{align*}@$ is positive @$\begin{align*}a\end{align*}@$ is negative
    degree is even

    left side:
    ::左左侧:输入答案

    right side:
    ::右侧右侧:输入您的答复

    left side:
    ::左左侧:输入答案

    right side:
    ::右侧右侧:输入您的答复

    degree is odd

    left side:
    ::左左侧:输入答案

    right side:
    ::右侧右侧:输入您的答复

    left side:
    ::左左侧:输入答案

    right side:
    ::右侧右侧:输入您的答复

     


    Activity 1: End Behavior of Polynomial Graphs
    ::活动1:多面图的结束行为

    In the introduction , the terms “up” and “down” were used to describe the end behavior  of a polynomial function. However, terms like “increases” and “decreases” are more mathematically precise . Additionally, to describe whether a function is increasing or decreasing, you should describe the direction along the x - axis in which you are moving.  To say that the right side of a polynomial points up means that as the x - value increases ( as you go to the right ), the y - value increases (points up).
    ::在导言中,“上”和“下”两词用来描述多边函数的结束行为。然而,“增加”和“减少”等词在数学上更为精确。此外,为了描述一个函数在增加还是减少,您应该描述您移动的 x 轴方向。如果说一个多元点的右侧意味着随着X 值的增加(您向右),Y 值的增加(您向右),y 值的增加( 向上点) 。

    This can also be  stated using mathematical notation.  When the   x - value increases , it is  written as  x  because it is increasing toward infinity.  When the x - value decreases it is written as  x  because it is decreasing toward negative infinity.
    ::也可以用数学符号来表示。 当 x 值增加时, 它被写成 x , 因为它正在向无穷度增长。 当 x 值减少时, 它被写成 x , 因为它正在向负无穷度下降 。

    lesson content

    T his notation can be used to write the rules for the end behavior of a polynomial function, as derived in the introduction.
    ::此标记可用于写入导 言中导出的多边函数结束行为的规则 。

    lesson content

    Answer the questions  below to practice using these rules.
    ::回答以下使用这些规则的实践问题。

    Discussion Question : Is it possible for a function with an odd degree to have no real roots? Is it possible for a polynomial with an even degree to have no real roots?
    ::讨论问题:具有奇特程度的函数是否可能没有真正的根?具有同等程度的多元婚姻是否可能没有真正的根?

     


    Activity 2: Multiplicities
    ::活动2:多种用途

    T he previous section, Roots of a Polynomial Equation , introduced zeros of a higher degree polynomial function, representing the x- intercepts , that repeated. T he number of times a zero repeats is referred to using the term multiplicity . Use the interactive below to explore how multiplicity affects a graph.
    ::上一节“多元等式的根”中引入了代表重复的 X 拦截的更高度多元函数的零。重复的零次数是指使用多重性这一术语的次数。使用下面的交互性来探索多重性如何影响一个图形。

    INTERACTIVE
    Multiplicities of Polynomials
    minimize icon
    • See the graph of function,  f ( x ) = a ( x 1 ) ( x 4 ) n ( x 7 )  

      ::见函数图, f(x) =a(x-1)(x-4)n(x-7)
    • Drag the sliders to change the values of  a  and  n  
      ::拖动滑动滑动器以更改 n 和 a 的值



    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No
    • When a zero has a multiplicity of 1, the function normally passes through the x-intercept.
      ::当零有多个 1 时,函数通常通过 X 界面。
    • When a zero has a multiplicity of 2, the function bounces off the x-intercept forming a parabola-like shape.
      ::当一个零的多重值为2时,函数会从形成类似抛物线形状的 X 界面中反弹。
    • When a zero has a multiplicity of 3, the function passes through x-intercept, forming a shape that the function  f ( x ) = x 3  has. 
      ::当零的多重值为 3 时,函数通过 x 界面,形成函数 f( x) =x3 的形状。

    Make and test a conjecture about how multiplicity relates to the shape formed when the graph passes through the x-intercept.
    ::设定并测试一个猜想,即当图形通过 X 界面时,多重性与形状的形成有何关联。

    Coupl ed  with your knowledge of end behavior, it makes it possible to predict whether the graph of a function will be positive or negative over specific intervals. Use the interactive below to explore another trick to figure this out.
    ::结合你对最终行为的了解, 它可以预测函数的图形是正的还是负的, 在特定的时间间隔内。 使用下面的交互功能来探索另一个技巧来解决这个问题 。

    INTERACTIVE
    Positive or Negative over an Interval
    minimize icon
    • Type a number in the given interval.
      ::在给定间隔中键入数字。
    • Determine whether each factor will be positive or negative when substituting that number for  x .  
      ::确定在将数字替换为 x 时,每个因素是正的还是负的。
    • From that, you can determine if that entire interval is positive or negative.
      ::从中,您可以确定整个间隔是正或负。
    • Press "Next Interval" to repeat the process for each interval.
      ::按下“ 下一个间隔” 来重复每个间隔的过程 。

    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

    Answer the questions  below to practice identifying the positivity of a function over intervals defined by the x-intercepts.
    ::回答下述问题,以便从实践上确定一项职能在X调查确定的时间间隔内是否具有积极性。

     


    Activity 3: Using Characteristics to Graph Polynomial Functions
    ::活动3:在图形多面函数中使用特征

    Use the interactive below to practice graphing polynomial functions using their characteristics.
    ::使用下方的交互功能,使用其特性进行多面函数的图形绘制。

    INTERACTIVE
    Finding Polynomials
    minimize icon
    • Enter the  x  values for the roots of the equation in the input box.
      ::在输入框中输入方程式根的 x 值。
    • They will appear on the grid.
      ::他们会出现在网格上
    • Once you have all of the roots, choose the box that the graph would be in based on the interval. 
      ::一旦您拥有了全部根, 请根据间隔选择图形所在的框 。
    • If you get it right, the graph will appear where the box was and you can move to the next interval. 
      ::如果正确的话, 图形将出现在框所在的位置, 您可以移动到下一个间隔 。

    Your device seems to be offline.
    Please check your internet connection and try again.

    +
    Do you want to reset the PLIX?
    Yes
    No

     


    Wrap-Up: Review Questions
    ::总结:审查问题

       Summary
    ::摘要

    For even functions:
    ::对于偶数函数 :

    • If the leading coefficient is positive: as x + ,     y +  
      ::如果主要系数是正数: as x, y
    • If the leading coefficient is positive: as x ,     y +  
      ::如果主要系数是正数: as x, y
    • If the leading coefficient is negative: as x + ,     y  
      ::如果主要系数为负: x,y。
    • If the leading coefficient is negative: as x ,     y  
      ::如果主要系数为负: x,y。

    For odd functions:
    ::对于奇数函数 :

    • If the leading coefficient is positive: as x + ,     y +  
      ::如果主要系数是正数: as x, y
    • If the leading coefficient is positive: as x ,     y  
      ::如果主要系数是正数: as x, y
    • If the leading coefficient is negative: as x + ,     y  
      ::如果主要系数为负: x,y。
    • If the leading coefficient is negative: as x ,     y +  
      ::如果主要系数为负: x,y。

    The multiplicity is the number of times a factor  appears in the factors of a polynomial.
    ::多重性是多元性因素中一个因素出现的次数。

    • When a zero has a multiplicity of 1, the function passes through the x-intercept.
      ::当零有多个 1 时,函数通过 X 界面。
    • When a zero has a multiplicity of 2, the function bounces off the x-axis at the value of the zero.
      ::当一个零的乘积为2时,函数从X轴反弹,其值为零。
    • When a zero has a multiplicity of 3, the function passes through the x-intercept, forming a shape that the function f ( x ) = x 3  has.
      ::当零的多重值为 3 时,函数通过 x 界面,形成函数 f( x) =x3 的形状。