Section outline


  • lesson content

    Maria can run  7 1 3  miles an hour. She decides to see how far she can run in  2 1 2  hours. If she maintains her speed, how many miles did Maria run?
    ::玛利亚每小时能跑713英里 她决定看她能在212小时内跑多远 如果她保持速度 玛利亚跑多少英里?

    In this concept, you will learn how to multiply mixed numbers.
    ::在这个概念中,你会学会如何乘以混合数字。

    Multiplying Mixed Numbers
    ::乘数混合数字

    mixed number  consists of a whole number and a fraction.
    ::混合数包括一个整数和一个分数。

    Here is multiplication problem involving a whole number and a mixed number.
    ::这是一个乘法问题,涉及一个整数和一个混合数。

    6 × 1 1 4 = _

    Multiplication  is a shortcut for repeated addition. The product of this expression is the total quantity of 6 groups of  1 1 4 . You can multiply 6 wholes and 6 parts and then find the  sum  of both. Or you can think of  1 1 4  in terms of parts. Convert  1 1 4  to an  improper fraction . Remember that to convert a mixed number to an improper fraction, multiply the  denominator  by the whole number. Then, add the  numerator  to the product and write that sum over the original denominator. 
    ::乘法是重复添加的捷径。 此表达式的产物是 6 组的总量 14 。 您可以乘以 6 个整体和 6 个部分, 然后找到两者的总和 。 或者您可以按部件来想 14 个整体和 6 个部分。 将 1 14 个部分转换为不适当的分数 。 记住, 要将混合数转换成不适当的分数, 将分母乘以整数 。 然后, 将数字添加到产品中, 并在原始分母上写这个总和 。

    1 1 4 = ( 4 × 1 ) + 1 4 = 5 4

    Here is the problem again with the improper fraction.
    ::问题又在这里 与不适当的分数。

    6 × 1 1 4 = 6 × 5 4

    Convert 6 into a fraction over one. 
    ::将 6 转换成分数 1 以上 1 。

    6 1 × 5 4

    Then you can either multiply the fraction and  simplify  or simplify first and then multiply. Here you can cross simplify the fractions first.
    ::然后您可以乘以分数, 并简化或先简化, 然后再乘。 您可以在此交叉简化分数 。

     

    6 1 × 5 4 = 3 1 × 5 2 = 15 2
     Finally, convert the improper fraction to a mixed number.

    15 2 = 7 1 2

    The product is  7 1 2 .
    ::产品是712

    Here is another mixed number multiplication problem.
    ::这是另一个混合数字乘法问题。

    1 2 × 2 1 4 = _

    A fraction is a "part" and a mixed number consists of "wholes and a part." When multiplying a fraction and a mixed number, you are looking for "a part of a whole and a part." The product of this expression is half of   2 1 4  .
    ::分数是“ part” , 混合数由“ 整数和一部分” 组成。 当乘以一个分数和混合数时, 您正在寻找“ 整数和一部分的一部分” 。 此表达式的产物为 2, 14 的半 。

    The first step is to convert the mixed number to an improper fraction.
    ::第一步是将混合数字转换成不适当的部分。

    2 1 4 = 9 4

    1 2 × 9 4

    The fractions are in  simplest form .
    ::分数以最简单的形式出现。

    Then, multiply the fractions.
    ::然后,乘以分数。

     

    1 2 × 9 4 = 9 8

    Next, simplify. Convert the improper fraction to a mixed number. 
    ::接下来,简化一下,把不适当的分数转换成混合数。

    9 8 = 1 1 8

    The product is  1 1 8 .
    ::产品是11.8。

    Here is a multiplication problem with two mixed numbers.
    ::这是一个乘法问题,有两个混合数字。

    The product of this expression is a whole and a part of another whole and a part. The key is to follow the same steps to find the solution.
    ::这种表达方式的产物是另一个整体和部分的完整和一部分,关键是遵循同样的步骤找到解决办法。

    1. Convert the mixed numbers to improper fractions.
      ::将混合数字转换成不适当的分数。
    2. Simplify if possible
      ::可能时简化
    3. Multiply
      ::乘乘乘乘
    4. Check that your answer is in simplest form.
      ::请检查您的答案是否以最简单的形式出现 。

    2 1 4 × 1 1 2 = _

    First, convert each mixed number to an improper fraction.
    ::首先,将每个混合数字转换成不适当的部分。

    2 1 4 = 9 4 1 1 2 = 3 2

    Rewrite the problem.
    ::重写问题。

    9 4 × 3 2 = _

    The fractions cannot be simplified so at this point. 
    ::分数无法简化 。

    Then, multiply the fractions. 
    ::然后,乘以分数。

    9 4 × 3 2 = 27 8

    Finally, check if the fraction is in simplest form. Convert the improper fraction to a mixed number.
    ::最后,检查分数是否最简单。将不适当的分数转换成混合数。

    27 8 = 3 3 8

    The product is  3 3 8 .
    ::产品为3,3,8。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Maria's run.
    ::之前,你对Maria的跑步有问题

    Maria can run  7 1 3  miles  per  hour and decides to run for  2 1 2  hours. Multiply her speed times the number of hours to find the total number of miles run.
    ::Maria每小时可以跑713英里, 决定跑212小时。 乘以她的速度乘以小时数, 才能找到行驶总英里数 。

    7 1 3 × 2 1 2 = _

    First, convert the mixed numbers to improper fractions.
    ::首先,将混合数字转换成不适当的分数。

    7 1 3 = 22 3 2 1 2 = 3 2 22 3 × 3 2

    Then, simplify the fractions. You can simply 2 and 22 with the GCF of 2 and 3 and 3 with the GCF 3.
    ::然后,简化分数。如果全球合作框架为2,3,3,3,2,22,则可以简单2,22。全球合作框架为2,3,3,3。

      22 3 × 3 2 = 11 1 × 1 1

    Next, multiply.
    ::下一个,乘数。

      11 × 1 = 11

    Maria ran 11 miles.
    ::玛丽亚跑了11英里

    Example 2
    ::例2

    Find the product. Answer in simplest form.
    ::找到产品,回答最简单

    1 3 × 2 1 5 = _

    First, convert the mixed number to an improper fraction. 
    ::首先,将混合数字转换成不适当的部分。

    2 1 5 = 11 5
     
    1 3 × 11 5

    The fractions are in simplest form.
    ::分数以最简单的形式出现。

    Then, multiply the fractions. 
    ::然后,乘以分数。

    1 3 × 11 5 = 11 15

    The product is  11 15 .
    ::产品为11 15。

    Example 3
    ::例3

    Find the product:  4 × 2 1 2 = _ . Answer in simplest form.
    ::查找产品: 4 × 2 1 2 = _. 回答最简单。

    First, convert the whole number and mixed number to fractions. 
    ::首先,将整数和混合数转换成分数。

    4 1 × 5 2

    Then, cross simplify the fractions. 
    ::然后,交叉简化分数。

    4 1 × 5 2 = 2 1 × 5 1

    Next, multiply the fractions. 
    ::接下来,乘以分数。

    2 1 × 5 1 = 10 1 = 10

    Note that a fraction with a number over the denominator of 1 is a whole number.  
    ::请注意,一分数超过1分母的分数是一个整数。

    The product is 10.
    ::产品是10。

    Example 4
    ::例4

    Find the product:  1 6 × 1 1 3 = _ . Answer in simplest form.
    ::查找产品: 1 6 × 1 1 3 = _. 回答最简单。

    First, convert the mixed number to an improper fraction. 
    ::首先,将混合数字转换成不适当的部分。

    1 6 × 4 3

    Then, cross simplify the fractions.
    ::然后,交叉简化分数。

    1 6 × 4 3 = 1 3 × 2 3

    Next, multiply the fractions. 
    ::接下来,乘以分数。

    1 3 × 2 3 = 2 9

    The fraction is in simplest form.
    ::分数以最简单的形式出现。

    The product is  2 9 .
    ::产品为2 9。

    Example 5
    ::例5

    Find the product:  4 1 3 × 1 1 2 = _ . Answer in simplest form.
    ::查找产品: 4, 1, 3 × 1, 1, 2 = _. 回答最简单。

    First, convert the mixed numbers to improper fractions. 
    ::首先,将混合数字转换成不适当的分数。

    4 1 3 = 13 3 1 1 2 = 3 2

     

    7 1 3 × 2 1 2 = _

    Then, cross simplify the fractions.
    ::然后,交叉简化分数。

    13 3 × 3 2 = 13 1 × 1 2

    Next, multiply the fractions.
    ::接下来,乘以分数。

     

    13 1 × 1 2 = 13 2

    Finally, convert the improper fraction to a mixed number.
    ::最后,将不当的分数转换成混合数。

      13 2 = 7 1 2

    The product is  7 1 2 .

    ::产品是712

    Review
    ::回顾

    Find the product in simplest form.
    ::以最简单的形式寻找产品。

    1. 7 × 1 1 3 = _
    2. 8 × 2 1 2 = _
    3. 6 × 3 1 3 = _
    4. 5 × 3 1 3 = _
    5. 9 × 2 1 2 = _
    6. 7 × 4 1 2 = _
    7. 9 × 2 1 5 = _
    8. 6 × 4 1 2 = _
    9. 8 × 2 1 4 = _
    10. 6 × 6 1 2 = _
    11. 1 3 × 2 1 4 = _
    12. 1 2 × 4 2 3 = _
    13. 1 4 × 6 2 3 = _
    14. 2 3 × 4 1 2 = _
    15. 1 5 × 5 1 3 = _
    16. 2 3 × 2 1 2 = _
    17. 4 7 × 2 1 7 = _
    18. 3 1 2 × 2 1 3 = _
    19. 5 1 2 × 3 1 4 = _
    20. 1 4 5 × 3 1 4 = _
    21. 1 1 2 × 2 1 3 = _
    22. 9 1 2 × 9 1 2 = _
    23. 1 8 × 8 1 3 = _
    24. 4 7 × 2 1 3 = _

    Review (Answers) 
    ::回顾(答复)

    Click   to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源