Section outline

  • While on vacation, you go scuba diving. The surface of the water is at an unknown altitude. You descend to a depth of 90 feet below the surface of the water. What is the vertex of the absolute value function that represents your maximum possible distance from sea level?
    ::度假时,你去潜水。 水的表面高度未知。 你沉到水表面下方90英尺的深处。 绝对值函数的顶部是什么, 代表你与海平面的最大距离?

    Graphing Absolute Value Functions
    ::绝对值函数

    You  have already learned how to solve and define . N ow take this idea one step further and graph absolute value equations.
    ::您已经学会了如何解析和定义 。 现在把这个想法再向前一步, 绘制绝对值方程式 。

    Graphing the Parent Graph of an Absolute Value Function
    ::绝对值函数的父图形图

    Let's follow the  steps below to learn about the parent graph of absolute value functions.
    ::让我们遵循下面的步骤 来了解绝对值函数的母图。

    Step 1:  G raph y = | x | . Draw a table for x and y , with the x values ranging from -3 to 3.
    ::第1步: 图表 yx 。 绘制 x 和 y 的表格, x - 值介于 - 3 至 3 之间 。

    x | x | y
    3 | 3 | 3
    2 | 2 | 2
    1 | 1 | 1
      | 0 |  
    1 | 1 | 1
    2 | 2 | 2
    3 | 3 | 3

    Step 2: Recall that the absolute value of a number is always positive. P lot each of the seven coordinate pairs  and graph the function.
    ::步骤2:回顾一个数字的绝对值总是正数。绘制七个坐标对中的每一个,并绘制函数图。

    lesson content

    Step 3: Notice that this function is very similar to the linear function , y = x . Draw this line on the graph in a different color or with a dashed line.
    ::第3步:注意此函数与 y=x 线性函数非常相似。 在图形上以不同颜色或破折线绘制此线条。

    Step 4: Now, fold the  graph on the x axis. What do you notice?
    ::第4步:现在,折叠 X - 轴上的图表。你注意到什么了?

    Y ou should notice  that when you fold your graph on the x axis, the line y = x becomes the absolute value equation  y = | x | . That is because the absolute value of a number can never be below zero; therefore the range will always be positive.  y = | x |  is considered the parent graph because it is the most basic of all the absolute value functions. All linear absolute value functions have this “V” shape.
    ::您应该注意到, 当您在 x - 轴折叠您的图形时, 线 y=x 将变成绝对值方程式 y x 。 这是因为数字的绝对值永远不能低于零; 因此, 范围将永远是正的。 y x 将被视为母图, 因为它是所有绝对值函数中最基本的函数。 所有线性绝对值函数都具有此“ V” 形状 。

    In general, you  can define the graph of y = | x | as y = { x ; x 0 x ; x < 0 . E ach side is the mirror image of the other, over a vertical line through the vertex.
    ::一般而言,您可以将 yx 的图形定义为 yx;x0-x;x<0。 每一面都是另一面的镜像, 穿过顶端的垂直线。

    Now, let's use a table to graph the following functions.
    ::现在,让我们用一个表格来绘制以下函数的图形。

    1. Graph y = | x 3 | . Determine the domain and range.
      ::图形 yx-3. 确定域和范围。

    In general, when you use a table to graph a function, pick some positive and negative numbers, as well as zero. Use the equation to help you determine which x values to pick. Setting what is inside the absolute value equal to zero yields  x = 3 . Pick three values on either side of x = 3 and then graph.
    ::一般而言,当您使用表格来绘制函数时,请选择一些正数和负数,以及零。使用方程式来帮助您确定要选择的 x- 值。设置绝对值内值等于零收益x=3。在 x=3 的两侧选择三个值,然后绘制图形。

    x | x 3 | y
    0 | 3 | 3
    1 | 2 | 2
    2 | 1 | 1
    3 | 0 | 0
    4 | 1 | 1
    5 | 2 | 2
    6 | 3 | 3

    lesson content

    Notice that this graph shifts to the right 3 when compared to the parent graph. The domain will be all real numbers, x R , and the range will be all positive real numbers, including zero, y [ 0 , ) .
    ::请注意, 此图表与父图形比较时向右移到右 3 。 域名将全部为真实数字 xR, 范围将全部为正数, 包括零, y_ {0} 。

    1. G raph y = | x | 5 . Determine the domain and range.
      ::5. 确定域域和范围。

    Be careful! Here, the minus 5 is not inside the absolute value. So, first take the absolute value of the x value and then subtract 5. In cases like these, where a value is subtracted after taking the absolute value,  the range may include negative numbers.
    ::注意! 在这里, 负 5 不在绝对值之内。 所以, 首先取 x- value 的绝对值, 然后减去 5 。 在这样的情况下, 如果在计算绝对值后减去一个数值, 则范围可能包括负数 。

    x | x | 5 y
    3 | 3 | 5 2
    2 | 2 | 5 3
    1 | 1 | 5 4
      | 0 | 5 5
    1 | 1 | 5 4
    2 | 2 | 5 3
    3 | 3 | 5 2

    lesson content

    Here, the graph shifts down 5 when compared to the parent graph. The domain will be all real numbers, x R , and the range will be all real numbers greater than or equal to -5, y [ - 5 , ) .
    ::这里, 图形与父图形相比向下移动 5 。 域将全部为真实数字 xR, 区域将全部为实际数字大于或等于 5 y y y {-5} 。

    In these t wo absolute value graphs, you may have noticed that there is a minimum point. This point is called the vertex. For instance , in the previous problem, the vertex is (0, -5). The vertex can also be a maximum. See the next  problem.
    ::在这两个绝对值图形中,您可能注意到有一个最小点。这个点被称为顶点。例如,在上一个问题中,顶点为 0, - 5。顶点也可以是一个最大值。请看下一个问题。

    1. Use a table to graph y = | x 1 | + 2.  Determine the vertex, domain, and range.
      ::使用表格绘制 yx- 12. 确定顶点、 域和范围 。

    Determine the  x -value that  makes the inside of the absolute value equation zero  ( x = 1 ) . Then make a table of values, including a couple values on either side of that x -value.
    ::确定使绝对值方程式零(x=1)内部成为绝对值方程式零(x=1)的 x 值,然后绘制一个数值表,包括该X 值两侧的一对数值。

    x | x 1 | + 2 y
    -2 | 2 1 | + 2 -1
    -1 | 1 1 | + 2 0
    0 | 0 1 | + 2 1
    1 | 1 1 | + 2 2
    2 | 2 1 | + 2 1
    3 | 3 1 | + 2 0
    4 | 4 1 | + 2 -1

    lesson content

    The vertex is (1, 2) and in this case, it is the maximum value. The domain is x R , and the range is y ( , 2 ] .
    ::顶点是(1, 2) , 在此情况下, 是最大值 。 域是 xR, 范围是 y( , 2) 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to identify the vertex of an  absolute value function that represents your possible distance from sea level after diving.
    ::早些时候,有人要求你确定 绝对值函数的顶点 代表你潜入后 可能距离海平面的距离

    The absolute value function that represents this situation is  y = | x 90 | , where  x  is your altitude above or below  sea level before diving. By graphing this function, you can see that the vertex occurs at the point (90, 0).
    ::表示此状态的绝对值函数是 yx- 90 , x 是潜水前海平面以上或以下的高度。 通过图形化此函数, 您可以看到顶点( 90, 0) 发生于点( 90, 0) 。

    lesson content

    Example 2
    ::例2

    Graph y = - | x 5 |  using a table. Determine the vertex, domain, and range.
    ::使用表格确定顶点、域和范围。

    Determine what makes the inside of the absolute value equation zero, x = 5 . Then, to make a  table of values, pick a couple values on either side of x = 5 .
    ::确定绝对值零的内值, x=5 。 然后,要绘制一个数值表,请在 x=5 的两侧选择一对数值。

    x | x 5 | y
    2 | 2 5 | -3
    3 | 3 5 | -2
    -4 | 4 5 | -1
    5 | 5 5 | 0
    6 | 6 5 | -1
    7 | 7 5 | -2
    8 | 8 5 | -3

    lesson content

    The vertex is (5, 0) and in this case, it is the maximum value. The domain is x R , and the range is y ( , 0 ] .
    ::顶点是 (5, 0) , 在此情况下, 是最大值 。 域是 xR, 范围是 y( , 0) 。

    Example 3
    ::例3

    Use a table to graph y = | x + 4 | 2.  Determine the vertex, domain, and range.
    ::使用表格绘制 yx+42. 确定顶点、 域和范围 。

    Determine what makes the inside of the absolute value equation zero, x = 4 . Then make a  table of values, including  a couple values on either side of x = 4 .
    ::确定绝对值零的内值, x4。 然后绘制一个数值表, 包括 x4 的两面的数值 。

    x | x + 4 | 2 y
    1 | 1 + 4 | 2 1
    -2 | 2 + 4 | 2 0
    -3 | 3 + 4 | 2 -1
    -4 | 4 + 4 | 2 -2
    -5 | 5 + 4 | 2 -1
    -6 | 6 + 4 | 2 0
    -7 | 7 + 4 | 2 1

    lesson content

    The vertex is (-4, -2) and in this case, it is the minimum value. The domain is x R , and the range is y [ 2 , ) .
    ::顶点是 (4, 4, 2) , 在此情况下, 这是最小值 。 域是 x R, 范围是 y [ - 2, ] 。

    Review
    ::回顾

    Graph the following functions using a table. Determine the vertex, domain, and range of each function.
    ::用表格绘制以下函数的图。确定每个函数的顶点、域和范围。

    1. y = | x + 6 |
      ::yx+6________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    2. y = | x 4 |
      ::~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    3. y = | x | + 3
      ::yx3
    4. y = | x | 2
      ::y'x%2
    5. y = | x + 3 | + 7
      ::yx+3+7
    6. y = | x 1 | 6
      ::yx - 16
    7. y = 2 | x |
      ::y=2x
    8. y = 3 | x |
      ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
    9. y = 1 3 | x |
      ::y=13=x*}Y=13=x*}Y=13=x*}Y=13=x*}Y=13=x*}Y=13=x*

    Reference  problems 1-9 as needed to fill in the blanks in problems 10-15.
    ::需要参考问题1-9,以填补问题10-15中的空白。

    1. If there is a negative sign in front of the absolute value, the graph is ________________ (when compared to the parent graph).
      ::如果绝对值前面有一个负符号,则图表为 _______(与母图比较时)。
    2. If the equation is y = | x h | + k , the vertex will be ___________________.
      ::如果等式是yx-hk,顶点将是。
    3. The domain of an absolute value function is always ____________________________.
      ::绝对值函数的域始终是 {} {} 。
    4. For y = a | x | , if a > 1 , then the graph will be ___________________ than the parent graph.
      ::对于 y=ax, 如果 a>1, 则图形将比 父图形为 \\\ 。
    5. For y = a | x | , if 0 < a < 1 , then the graph will be ___________________ than the parent graph.
      ::y=ax,如果 0<a<1, 则图形将比父图形为 \\\\ 。
    6. Without making a table, what is the vertex of y = | x 9 | + 7 ?
      ::不做桌子,你-9-7的顶点是什么?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。