定义复杂数字
Section outline
-
The coldest possible temperature, known as absolute zero is almost –460 degrees Fahrenheit. What is the square root of this number?
::最冷的温度,被称为绝对零的温度几乎 — — 460华氏度。 这个数字的平方根是什么?Complex Numbers
::复数数Before this concept, all numbers have been real numbers. 2, -5, , and are all examples of real numbers. With what we have previously learned, we cannot find because you cannot take the square root of a negative number. There is no real number that, when multiplied by itself, equals -25. Let’s simplify .
::在这个概念之前,所有数字都是真实数字。 2, 5, 11, 和13都是真实数字的例子。 以我们以前所学的,我们无法找到25, 因为你不能从负数的平方根中找到25。 没有真实数字, 当自己乘以乘以25时, 等于25。让我们简化-25。In order to take the square root of a negative number we are going to assign a variable, . represents an . Now, we can use to take the square root of a negative number.
::为了从负数的平方根中取出一个负数的平方根, 我们要指定 - 1 一个变量, i. i 代表一个 。 现在我们可以用我来从负数的平方根中取出一个负数的平方根 。
::-25=251=5-1=5iAll complex numbers have the form , where and are real numbers. is the real part of the complex number and is the imaginary part . If , then is left and the number is a real number. If , then the number is only and called a pure imaginary number . If and , the number will be an imaginary number.
::所有复数都有 a+Bi 的窗体, 其中 a 和 b 是真实数字。 a 是复数的真实部分, b 是假想部分。 如果 b=0, 则左键是一个数字。 如果 a=0, 则数字只是一个实际数字。 如果 a=0, 数字仅是双数, 称为纯假想数字。 如果 b=0 和 a=0, 数字将是一个虚想数字 。Let's find .
::我们找找 -162First pull out the . Then, simplify .
::先拿出i 然后简化162
::- 1621162=i162=i812=9i2Powers of i
::i 权力 i 权力In addition to now being able to take the square root of a negative number, also has some interesting properties. Try to find and .
::除了现在可以选择负数的平方根外, 我还有一些有趣的属性。 试着找到 i2, i3 和 i4 。Step 1: Write out and simplify.
::第1步: 写出i2 并简化 i2=ii111121Step 2: Write out and simplify.
::第2步:写出i3并简化。 i3=i2_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_Step 3: Write out and simplify.
::第3步:写出i4并简化。 i4=i2i2=i2i2}11=1Step 4: Write out and simplify.
::第4步:写出i5并简化。 i5=i4i=1i=iStep 5: Write out and simplify.
::第5步:写出i6并简化。 i6=i4i2=11111Step 6: Do you see a pattern? Describe it and try to find .
::第6步: 你看到一个模式吗? 描述它并尝试找到 i19 。You should see that the powers of repeat every 4 powers. So, all the powers that are divisible by 4 will be equal to 1. To find , divide 19 by 4 and determine the remainder. That will tell you what power it is the same as.
::您应该看到我重复每四个权力的权力。 因此, 所有四分之四的权力将等于 1 。 要找到 i19, 将19 除以 4, 并确定剩余的权力。 这将告诉您什么权力与什么权力相同 。
::i19=i16_i3=1}i19=i16_i3=1}i19=i16_i3_iNow, let's find the following powers of i.
::现在,让我们找到我下面的力量-
::i32 i32
32 is divisible by 4, so .
::32 以 4 变4 表示, 所以 i32= 1 。-
::150 i50
, with a remainder of 2. Therefore, .
::504=12,剩余2, 因此,i50=i2=1。-
::i7 i7
, with a remainder of 3. Therefore,
::74=1,其余为3,因此,i7=i3Finally, let's simplify the following complex expressions.
::最后,让我们简化以下复杂的表达方式。-
:6-4i)+(5+8i)
:6-4i)+(5+8i)=6-4i+5+8i=11+4i
-
::9-(4+一)+(2-7i)
::9-(4+一)+(2-7i)=9-4-4-i+2-7i=7-8iTo add or subtract complex numbers, you need to combine like terms. Be careful with negatives and properly distributing them. Your answer should always be in standard form , which is .
::要添加或减去复数, 您需要将类似条件合并。 注意底片并正确分配。 您的回答应该总是以标准格式( a+Bi) 表示, 即 a+Bi 。Examples
::实例Example 1
::例1Earlier, you were asked to find the square root of -460 degrees.
::早些时候,你被要求找到 -460度的平方根We're looking for .
::我们正在寻找 -460。First we need to pull out the . Then, we need to simplify .
::首先,我们需要拿出i。然后,我们需要简化460。
::- 4601460=i460=i4115=2i115Example 2
::例2Simplify .
::简化-49。Rewrite in terms of and simplify the radical.
::重写 -49 以i 和简化激进。
::- 49=i49=7iExample 3
::例3Simplify .
::简化-1125。Rewrite in terms of and simplify the radical.
::重写-125的i 并简化激进。
::-125=i125=i25=i25=5=5i5Example 4
::例4Simplify .
::简化 i210 。, with a remainder of 2. Therefore, .
::=210=i212=i2*1。Example 5
::例5Simplify .
::简化 (8- 3i)-( 12- i) 。Distribute the negative and combine like terms.
::将负面的分布在一边, 并结合类似术语。
:8-3i)-(12-i)=8-3i-12+i4-2i)
Review
::回顾Simplify each expression and write in standard form.
::简化每个表达式,并以标准格式写入。-
::- 1298年 -
::7i-126 7i-126 -
::i8 i8 -
::16i22 16i22 -
::- 965 - 965 -
::i365 -
::2 i91 -
:11-5i)+(6-7i)
-
:14+2i)-(20+9i)
-
:8-一)-(3+4i)+15i
-
::--10i-(1-4i) -
:0.2+1.5i)-(-0.6+i)
-
::6+(18-i)-(2+12i) -
::-i+(19+22i)-(8)-14i) -
::18-(4+6i)+(17-9i)+24i
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -