Section outline

  • The coldest possible temperature, known as absolute zero is almost –460 degrees Fahrenheit. What is the square root of this number?
    ::最冷的温度,被称为绝对零的温度几乎 — — 460华氏度。 这个数字的平方根是什么?

    Complex Numbers
    ::复数数

    Before this concept, all numbers have been real numbers. 2, -5, 11 , and 1 3 are all examples of real numbers. With what we have previously learned, we cannot find 25 because you cannot take the square root of a negative number. There is no real number that, when multiplied by itself, equals -25. Let’s simplify 25 .
    ::在这个概念之前,所有数字都是真实数字。 2, 5, 11, 和13都是真实数字的例子。 以我们以前所学的,我们无法找到25, 因为你不能从负数的平方根中找到25。 没有真实数字, 当自己乘以乘以25时, 等于25。让我们简化-25。

    25 = 25 1 = 5 1

    In order to take the square root of a negative number we are going to assign 1 a variable, i . i represents an . Now, we can use i to take the square root of a negative number.
    ::为了从负数的平方根中取出一个负数的平方根, 我们要指定 - 1 一个变量, i. i 代表一个 。 现在我们可以用我来从负数的平方根中取出一个负数的平方根 。

    25 = 25 1 = 5 1 = 5 i

    ::-25=251=5-1=5i

    All complex numbers have the form a + b i , where a and b are real numbers. a is the real part of the complex number and b is the imaginary part . If b = 0 , then a is left and the number is a real number. If a = 0 , then the number is only b i and called a pure imaginary number . If b 0 and a 0 , the number will be an imaginary number.
    ::所有复数都有 a+Bi 的窗体, 其中 a 和 b 是真实数字。 a 是复数的真实部分, b 是假想部分。 如果 b=0, 则左键是一个数字。 如果 a=0, 则数字只是一个实际数字。 如果 a=0, 数字仅是双数, 称为纯假想数字。 如果 b=0 和 a=0, 数字将是一个虚想数字 。

    Let's find 162 .
    ::我们找找 -162

    First pull out the i . Then, simplify 162 .
    ::先拿出i 然后简化162

    162 = 1 162 = i 162 = i 81 2 = 9 i 2

    ::- 1621162=i162=i812=9i2

    Powers of i
    ::i 权力 i 权力

    In addition to now being able to take the square root of a negative number, i also has some interesting properties. Try to find i 2 , i 3 , and i 4 .
    ::除了现在可以选择负数的平方根外, 我还有一些有趣的属性。 试着找到 i2, i3 和 i4 。

    Step 1: Write out i 2 and simplify. i 2 = i i = 1 1 = 1 2 = 1
    ::第1步: 写出i2 并简化 i2=ii111121

    Step 2: Write out i 3 and simplify. i 3 = i 2 i = 1 i = i
    ::第2步:写出i3并简化。 i3=i2_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_

    Step 3: Write out i 4 and simplify. i 4 = i 2 i 2 = 1 1 = 1
    ::第3步:写出i4并简化。 i4=i2i2=i2i2}11=1

    Step 4: Write out i 5 and simplify. i 5 = i 4 i = 1 i = i
    ::第4步:写出i5并简化。 i5=i4i=1i=i

    Step 5: Write out i 6 and simplify. i 6 = i 4 i 2 = 1 1 = 1
    ::第5步:写出i6并简化。 i6=i4i2=11111

    Step 6: Do you see a pattern? Describe it and try to find i 19 .
    ::第6步: 你看到一个模式吗? 描述它并尝试找到 i19 。

    You should see that the powers of i repeat every 4 powers. So, all the powers that are divisible by 4 will be equal to 1. To find i 19 , divide 19 by 4 and determine the remainder. That will tell you what power it is the same as.
    ::您应该看到我重复每四个权力的权力。 因此, 所有四分之四的权力将等于 1 。 要找到 i19, 将19 除以 4, 并确定剩余的权力。 这将告诉您什么权力与什么权力相同 。

    i 19 = i 16 i 3 = 1 i 3 = i

    ::i19=i16_i3=1}i19=i16_i3=1}i19=i16_i3_i

    Now, let's find the following powers of i.
    ::现在,让我们找到我下面的力量

    1. i 32
      ::i32 i32

     32 is divisible by 4, so i 32 = 1 .
    ::32 以 4 变4 表示, 所以 i32= 1 。

    1. i 50
      ::150 i50

    50 ÷ 4 = 12 , with a remainder of 2. Therefore, i 50 = i 2 = 1 .
    ::504=12,剩余2, 因此,i50=i2=1。

    1. i 7
      ::i7 i7

    7 ÷ 4 = 1 , with a remainder of 3. Therefore, i 7 = i 3 = i
    ::74=1,其余为3,因此,i7=i3

    Finally, let's simplify the following complex expressions.
    ::最后,让我们简化以下复杂的表达方式。

    1. ( 6 4 i ) + ( 5 + 8 i )
      :sad6-4i)+(5+8i)

    ( 6 4 i ) + ( 5 + 8 i ) = 6 4 i + 5 + 8 i = 11 + 4 i
    :sad6-4i)+(5+8i)=6-4i+5+8i=11+4i

    1. 9 ( 4 + i ) + ( 2 7 i )
      ::9-(4+一)+(2-7i)

    9 ( 4 + i ) + ( 2 7 i ) = 9 4 i + 2 7 i = 7 8 i
    ::9-(4+一)+(2-7i)=9-4-4-i+2-7i=7-8i

    To add or subtract complex numbers, you need to combine like terms. Be careful with negatives and properly distributing them. Your answer should always be in standard form , which is a + b i .
    ::要添加或减去复数, 您需要将类似条件合并。 注意底片并正确分配。 您的回答应该总是以标准格式( a+Bi) 表示, 即 a+Bi 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the square root of -460 degrees. 
    ::早些时候,你被要求找到 -460度的平方根

    We're looking for 460 .
    ::我们正在寻找 -460。

    First we need to pull out the i . Then, we need to simplify 460 .
    ::首先,我们需要拿出i。然后,我们需要简化460。

    460 = 1 460 = i 460 = i 4 115 = 2 i 115

    ::- 4601460=i460=i4115=2i115

    Example 2
    ::例2

    Simplify  49 .
    ::简化-49。

    Rewrite 49 in terms of i and simplify the radical.
    ::重写 -49 以i 和简化激进。

    49 = i 49 = 7 i

    ::- 49=i49=7i

    Example 3
    ::例3

    Simplify  125 .
    ::简化-1125。

    Rewrite 125 in terms of i and simplify the radical.
    ::重写-125的i 并简化激进。

    125 = i 125 = i 25 5 = 5 i 5

    ::-125=i125=i25=i25=5=5i5

    Example 4
    ::例4

    Simplify  i 210 .
    ::简化 i210 。

    210 ÷ 4 = 52 , with a remainder of 2. Therefore, i 210 = i 2 = 1 .
    ::=210=i212=i2*1。

    Example 5
    ::例5

    Simplify  ( 8 3 i ) ( 12 i ) .
    ::简化 (8- 3i)-( 12- i) 。

    Distribute the negative and combine like terms.
    ::将负面的分布在一边, 并结合类似术语。

    ( 8 3 i ) ( 12 i ) = 8 3 i 12 + i = 4 2 i

    :sad8-3i)-(12-i)=8-3i-12+i4-2i)

    Review
    ::回顾

    Simplify each expression and write in standard form. 
    ::简化每个表达式,并以标准格式写入。

    1. 9
    2. 242
    3. 6 45
    4. 12 i 98
      ::- 1298年
    5. 32 27
    6. 7 i 126
      ::7i-126 7i-126
    7. i 8
      ::i8 i8
    8. 16 i 22
      ::16i22 16i22
    9. 9 i 65
      ::- 965 - 965
    10. i 365
      ::i365
    11. 2 i 91
      ::2 i91
    12. 16 80
    13. ( 11 5 i ) + ( 6 7 i )
      :sad11-5i)+(6-7i)
    14. ( 14 + 2 i ) ( 20 + 9 i )
      :sad14+2i)-(20+9i)
    15. ( 8 i ) ( 3 + 4 i ) + 15 i
      :sad8-一)-(3+4i)+15i
    16. 10 i ( 1 4 i )
      ::--10i-(1-4i)
    17. ( 0.2 + 1.5 i ) ( 0.6 + i )
      :sad0.2+1.5i)-(-0.6+i)
    18. 6 + ( 18 i ) ( 2 + 12 i )
      ::6+(18-i)-(2+12i)
    19. i + ( 19 + 22 i ) ( 8 14 i )
      ::-i+(19+22i)-(8)-14i)
    20. 18 ( 4 + 6 i ) + ( 17 9 i ) + 24 i
      ::18-(4+6i)+(17-9i)+24i

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。