Section outline

  • Mr. Marchez draws a triangle on the board. He labels the height (2 + 3 i ) and the base (2 - 4 i ). "Find the area of the triangle," he says. (Recall that the area of a triangle is A = 1 2 b h , b is the length of the base and h is the length of the height.)
    ::Marchez先生在棋盘上画了一个三角形。他标注了高度(2+3i)和基座(2-4i)。他说,“找到三角形的区域”。 (回顾三角形的区域是A=12bh,b是基底的长度,h是高度的长度。)

    Multiplying and Dividing Complex Numbers
    ::乘数和分解复合体数

    When multiplying , FOIL the two numbers together and then combine like terms. At the end, there will be an i 2 term. Recall that i 2 = 1 and continue to simplify.
    ::当乘法时, FOIL 将两个数字相加, 然后将类似条件合并。 结尾处将有一个 i2 术语。 回顾 i2 @% 1, 并继续简化 。

    Simplify the following expression.
    ::简化以下表达式 。

    6 i ( 1 4 i )

    ::6i(1--4i)

    Distribute the 6 i to both parts inside the parenthesis.
    ::将6i分布在括号内的两个部分。

    6 i ( 1 4 i ) = 6 i 24 i 2

    ::6i( 1- 4i) =6i- 24i2

    Substitute i 2 = 1 and simplify further.
    ::替换 i21, 进一步简化 。

    = 6 i 24 ( 1 ) = 24 + 6 i

    ::=6i-24(-1)=24+6i

    Remember to always put the real part first.
    ::记住永远把真正的部分放在第一位

    ( 5 2 i ) ( 3 + 8 i )
    :sad5-2i)(3+8i)

    FOIL the two terms together.
    ::将这两个条件放在一起。

    ( 5 2 i ) ( 3 + 8 i ) = 15 + 40 i 6 i 16 i 2 = 15 + 34 i 16 i 2

    :sad5-2i)(3+8i)=15+40i-6i-16i2=15+34i-16i)

    Substitute i 2 = 1 and simplify further.
    ::替换 i21, 进一步简化 。

    = 15 + 34 i 16 ( 1 ) = 15 + 34 i + 16 = 31 + 34 i

    ::=15+34i-16(-1)=15+34i+16=31+34i

    Dividing complex numbers is a bit more complicated. Similar to irrational numbers, complex numbers cannot be in the denominator of a fraction. To get rid of the complex number in the denominator, we need to multiply by the complex conjugate . If a complex number has the form a + b i , then its complex conjugate is a b i . For example, the complex conjugate of 6 + 5 i would be 6 5 i . Therefore, rather than dividing complex numbers, we multiply by the complex conjugate.
    ::分解复杂数字比较复杂。 与非理性数字相似, 复杂数字不能在分母的分母中。 要摆脱分母中的复杂数字, 我们需要乘以复杂的同母体。 如果一个复杂数字具有 a+Bi 的形式, 那么它的复杂共和就是 a- bi 。 例如, 6+5i 的复杂共和体将是 -6 - 5i 。 因此, 我们不是将复杂数字分开,而是通过复杂的同母体来乘以 6 - 5i 。

    Simplify the following expression.

    8 3 i 6 i

    ::简化以下表达式.8-3i6i

    In the case of dividing by a pure , you only need to multiply the top and bottom by that number. Then, use multiplication to simplify.
    ::在除法为纯净的情况下,只需将上下乘以该数字即可。然后,使用乘法简化。

    8 3 i 6 i 6 i 6 i = 48 i 18 i 2 36 i 2 = 18 + 48 i 36 = 18 36 + 48 36 i = 1 2 4 3 i

    ::8-3i6i6i6i=48i-18i236i2=18+48i-36=18-36-36+48-36i12-43i

    When the complex number contains fractions, write the number in standard form, keeping the real and imaginary parts separate. Reduce both fractions separately.
    ::当复数包含分数时, 请以标准格式写入数字, 将真实部分和想象部分分开。 将两个分数分开 。

    Simplify the following expression.
    ::简化以下表达式 。

    3 5 i 2 + 9 i

    ::3-5i2+9i 3-5i2+9i

    Now we are dividing by 2 + 9 i , so we will need to multiply the top and bottom by the complex conjugate, 2 9 i .
    ::现在我们除以 2+9i, 所以我们需要乘以上层和下层 复杂的共和体, 2 - 9i 。

    3 5 i 2 + 9 i 2 9 i 2 9 i = 6 27 i 10 i + 45 i 2 4 18 i + 18 i 81 i 2 = 6 37 i 45 4 + 81 = 39 37 i 85 = 39 85 37 85 i

    ::3-5i2+9i2-9i2-9i-2-9i=6-27i-10i+45i24-18i+18i-81i2=6-37i-454+8139-37i853985-3785i

    Notice, by multiplying by the complex conjugate, the denominator becomes a real number and you can split the fraction into its real and imaginary parts.
    ::注意,通过乘以复杂的共鸣, 分母变成了一个真实的数字, 你可以将分母分割成 其真实的和想象的部位。

    In the previous three  problems above , we substituted  i 2 = 1 to simplify the fraction further. Your final answer should never have any power of i greater than 1.
    ::在以上前三个问题中, 我们替换了i2 @% 1 来进一步简化分数 。 您的最后答案绝对不能比 1 强 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the area of the triangle. 
    ::早些时候,你被要求找到三角形的区域。

    The area of the triangle is ( 2 + 3 i ) ( 2 4 i ) 2 so FOIL the two terms together and divide by 2.
    ::三角形区域为(2+3i)(2-4i)2,因此,FOIL两个词相加,除以2。

    ( 2 + 3 i ) ( 2 4 i ) = 4 8 i + 6 i 12 i 2 = 4 2 i 12 i 2

    :sad2+3i)(2-4i)=4-8i+6i-12i2=4-2i-12i2)

    Substitute i 2 = 1 and simplify further.
    ::替换 i21, 进一步简化 。

    = 4 2 i 12 ( 1 ) = 4 2 i + 12 = 16 2 i

    ::=4-2i-12(-1)=4-2i+12=16-2i

    Now divide this product by 2.
    ::现在将这一产品除以2。

    16 2 i 2 = 8 i
    ::16-2i2=8-i

    Therefore the area of the triangle is 8 i .
    ::因此三角形的面积是8-i。

    Example 2
    ::例2

    What is the complex conjugate of 7 5 i ?
    ::7 -5i的复杂结合是什么?

    7 + 5 i
    ::7+5i 7+5i

    Example 3
    ::例3

    Simplify the following complex expression:  ( 7 4 i ) ( 6 + 2 i ) .
    ::简化以下复杂表达式: (7-4i)(6+2i)

    FOIL the two expressions.
    ::发现两种表达方式。

    ( 7 4 i ) ( 6 + 2 i ) = 42 + 14 i 24 i 8 i 2 = 42 10 i + 8 = 50 10 i

    :sad7-4i)(6+2i)=42+14i-24i-8i2=42-10i+8=50-10i)

    Example 4
    ::例4

    Simplify the following complex expression:  10 i 5 i .
    ::简化以下复杂表达式: 10- i5i。

    Multiply the numerator and denominator by 5 i .
    ::乘以 5i 乘以分子和分母 。

    10 i 5 i 5 i 5 i = 50 i 5 i 2 25 i 2 = 5 + 50 i 25 = 5 25 + 50 25 i = 1 5 2 i

    ::10 - i5i5i5i=50i-5i225i2=5+50i-225=5 - 25=5 - 25+50-25i15-2i

    Example 5
    ::例5

    Simplify the following complex expression:  8 + i 6 4 i .
    ::简化以下复杂表达式: 8+i6-4i。

     Multiply the numerator and denominator by the complex conjugate, 6 + 4 i .
    ::乘以 6+4i 的复合二次曲线的分子和分母。

    8 + i 6 4 i 6 + 4 i 6 + 4 i = 48 + 32 i + 6 i + 4 i 2 36 + 24 i 24 i 16 i 2 = 48 + 38 i 4 36 + 16 = 44 + 38 i 52 = 44 52 + 38 52 i = 11 13 + 19 26 i

    ::8+i6-4i6+4i6+4i6+4i6+4i=48+32i+6i+6i+4i+4i236+24i-24i-166i2=48+38i-436+16=44+38i52=4452+3852i=1113+1926i

    Review
    ::回顾

    Simplify the following expressions. Write your answers in standard form. 
    ::简化以下表达式。 以标准格式写入您的答复 。

    1. i ( 2 7 i )
      ::i(2-7i) i(2-7i)
    2. 8 i ( 6 + 3 i )
      ::8i(6+3i)
    3. 2 i ( 11 4 i )
      ::--2i(11-4i)
    4. ( 9 + i ) ( 8 12 i )
      :sad9+一)(8-12i)
    5. ( 4 + 5 i ) ( 3 + 16 i )
      :sad4+5i)(3+16i)
    6. ( 1 i ) ( 2 4 i )
      :sad1-(一)(2)-4(一))
    7. 4 i ( 2 3 i ) ( 7 + 3 i )
      ::4i(2-3i)(7+3i)
    8. ( 8 5 i ) ( 8 + 5 i )
      :sad8-5i)(8+5i)
    9. 4 + 9 i 3 i
      ::4+9i3i 4+9i3i
    10. 6 i 12 i
      ::6-i-i12i
    11. 7 + 12 i 5 i
      ::7+12i-5i
    12. 4 2 i 6 6 i
      ::4-26-6-6i 4-26-6-6i
    13. 2 i 2 + i
      ::2-一2+一
    14. 10 + 8 i 2 + 4 i
      ::10+8i2+4i
    15. 14 + 9 i 7 20 i
      ::14+9i7-20i

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。