5.9 乘数和分解复合体数
Section outline
-
Mr. Marchez draws a triangle on the board. He labels the height (2 + 3 i ) and the base (2 - 4 i ). "Find the area of the triangle," he says. (Recall that the area of a triangle is , b is the length of the base and h is the length of the height.)
::Marchez先生在棋盘上画了一个三角形。他标注了高度(2+3i)和基座(2-4i)。他说,“找到三角形的区域”。 (回顾三角形的区域是A=12bh,b是基底的长度,h是高度的长度。)Multiplying and Dividing Complex Numbers
::乘数和分解复合体数When multiplying , FOIL the two numbers together and then combine like terms. At the end, there will be an term. Recall that and continue to simplify.
::当乘法时, FOIL 将两个数字相加, 然后将类似条件合并。 结尾处将有一个 i2 术语。 回顾 i2 @% 1, 并继续简化 。Simplify the following expression.
::简化以下表达式 。
::6i(1--4i)Distribute the to both parts inside the parenthesis.
::将6i分布在括号内的两个部分。
::6i( 1- 4i) =6i- 24i2Substitute and simplify further.
::替换 i21, 进一步简化 。
::=6i-24(-1)=24+6iRemember to always put the real part first.
::记住永远把真正的部分放在第一位
:5-2i)(3+8i)
FOIL the two terms together.
::将这两个条件放在一起。
:5-2i)(3+8i)=15+40i-6i-16i2=15+34i-16i)
Substitute and simplify further.
::替换 i21, 进一步简化 。
::=15+34i-16(-1)=15+34i+16=31+34iDividing complex numbers is a bit more complicated. Similar to irrational numbers, complex numbers cannot be in the denominator of a fraction. To get rid of the complex number in the denominator, we need to multiply by the complex conjugate . If a complex number has the form , then its complex conjugate is . For example, the complex conjugate of would be . Therefore, rather than dividing complex numbers, we multiply by the complex conjugate.
::分解复杂数字比较复杂。 与非理性数字相似, 复杂数字不能在分母的分母中。 要摆脱分母中的复杂数字, 我们需要乘以复杂的同母体。 如果一个复杂数字具有 a+Bi 的形式, 那么它的复杂共和就是 a- bi 。 例如, 6+5i 的复杂共和体将是 -6 - 5i 。 因此, 我们不是将复杂数字分开,而是通过复杂的同母体来乘以 6 - 5i 。Simplify the following expression.
::简化以下表达式.8-3i6iIn the case of dividing by a pure , you only need to multiply the top and bottom by that number. Then, use multiplication to simplify.
::在除法为纯净的情况下,只需将上下乘以该数字即可。然后,使用乘法简化。
::8-3i6i6i6i=48i-18i236i2=18+48i-36=18-36-36+48-36i12-43iWhen the complex number contains fractions, write the number in standard form, keeping the real and imaginary parts separate. Reduce both fractions separately.
::当复数包含分数时, 请以标准格式写入数字, 将真实部分和想象部分分开。 将两个分数分开 。Simplify the following expression.
::简化以下表达式 。
::3-5i2+9i 3-5i2+9iNow we are dividing by , so we will need to multiply the top and bottom by the complex conjugate, .
::现在我们除以 2+9i, 所以我们需要乘以上层和下层 复杂的共和体, 2 - 9i 。
::3-5i2+9i2-9i2-9i-2-9i=6-27i-10i+45i24-18i+18i-81i2=6-37i-454+8139-37i853985-3785iNotice, by multiplying by the complex conjugate, the denominator becomes a real number and you can split the fraction into its real and imaginary parts.
::注意,通过乘以复杂的共鸣, 分母变成了一个真实的数字, 你可以将分母分割成 其真实的和想象的部位。In the previous three problems above , we substituted to simplify the fraction further. Your final answer should never have any power of greater than 1.
::在以上前三个问题中, 我们替换了i2 @% 1 来进一步简化分数 。 您的最后答案绝对不能比 1 强 。Examples
::实例Example 1
::例1Earlier, you were asked to find the area of the triangle.
::早些时候,你被要求找到三角形的区域。The area of the triangle is so FOIL the two terms together and divide by 2.
::三角形区域为(2+3i)(2-4i)2,因此,FOIL两个词相加,除以2。
:2+3i)(2-4i)=4-8i+6i-12i2=4-2i-12i2)
Substitute and simplify further.
::替换 i21, 进一步简化 。
::=4-2i-12(-1)=4-2i+12=16-2iNow divide this product by 2.
::现在将这一产品除以2。
::16-2i2=8-iTherefore the area of the triangle is .
::因此三角形的面积是8-i。Example 2
::例2What is the complex conjugate of ?
::7 -5i的复杂结合是什么?
::7+5i 7+5iExample 3
::例3Simplify the following complex expression: .
::简化以下复杂表达式: (7-4i)(6+2i)FOIL the two expressions.
::发现两种表达方式。
:7-4i)(6+2i)=42+14i-24i-8i2=42-10i+8=50-10i)
Example 4
::例4Simplify the following complex expression: .
::简化以下复杂表达式: 10- i5i。Multiply the numerator and denominator by .
::乘以 5i 乘以分子和分母 。
::10 - i5i5i5i=50i-5i225i2=5+50i-225=5 - 25=5 - 25+50-25i15-2iExample 5
::例5Simplify the following complex expression: .
::简化以下复杂表达式: 8+i6-4i。Multiply the numerator and denominator by the complex conjugate, .
::乘以 6+4i 的复合二次曲线的分子和分母。
::8+i6-4i6+4i6+4i6+4i6+4i=48+32i+6i+6i+4i+4i236+24i-24i-166i2=48+38i-436+16=44+38i52=4452+3852i=1113+1926iReview
::回顾Simplify the following expressions. Write your answers in standard form.
::简化以下表达式。 以标准格式写入您的答复 。-
::i(2-7i) i(2-7i) -
::8i(6+3i) -
::--2i(11-4i) -
:9+一)(8-12i)
-
:4+5i)(3+16i)
-
:1-(一)(2)-4(一))
-
::4i(2-3i)(7+3i) -
:8-5i)(8+5i)
-
::4+9i3i 4+9i3i -
::6-i-i12i -
::7+12i-5i -
::4-26-6-6i 4-26-6-6i -
::2-一2+一 -
::10+8i2+4i -
::14+9i7-20i
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -