2.监督学习和非监督学习
章节大纲
-
主题:
- 决策树:ID3、分类与回归树
- 回归:线性回归、多元线性回归、逻辑回归
- 神经网络:简介、感知器、多层感知器
- 支持向量机:线性和非线性、核函数
- K近邻
- 聚类简介:K-均值聚类、K-众数聚类
Topics: Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression,
Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perception,
Multilayer Perception, Support Vector Machines: Linear and Non-Linear, Kernel Functions, K
Nearest Neighbors. Introduction to clustering, K-means clustering, K-Mode Clustering.