Skip to main content
Side panel
Home
Calendar
More
English (en)
简体中文 (zh_cn)
English (en)
Log in
The Way To Learn
Home
Calendar
Open course index
Home
Courses
编程与计算机科学
机器学习
机器学习
3.集成与概率学习
3.集成与概率学习
Section outline
Select activity 3.1 引言(Introduction)
3.1 引言(Introduction)
Page
Select activity 3.2 模型组合方案 - 组合多个学习器(Model Combination Schemes - Combining Multiple Learners)
3.2 模型组合方案 - 组合多个学习器(Model Combination Schemes - Combining Multiple Learners)
Page
Select activity 3.3 投票法(Voting)
3.3 投票法(Voting)
Page
Select activity 3.4 纠错输出码 (Error-Correcting Output Codes)
3.4 纠错输出码 (Error-Correcting Output Codes)
Page
Select activity 3.5 自举聚合 (Bagging)
3.5 自举聚合 (Bagging)
Page
Select activity 3.5.1 随机森林(RANDOM FORESTS)
3.5.1 随机森林(RANDOM FORESTS)
Page
Select activity 3.6 提升法(Boosting )
3.6 提升法(Boosting )
Page
Select activity 3.6.1 自适应提升(AdaBoost)
3.6.1 自适应提升(AdaBoost)
Page
Select activity 3.6.2 堆叠泛化(Stacking)
3.6.2 堆叠泛化(Stacking)
Page
Select activity 3.7 概率学习(Probabilistic Learning)
3.7 概率学习(Probabilistic Learning)
Page
Select activity 3.8 高斯混合模型(GAUSSIAN MIXTURE MODELS)
3.8 高斯混合模型(GAUSSIAN MIXTURE MODELS)
Page
Select activity 3.9 期望-最大化 (EM) 算法(The Expectation-Maximisation (EM) Algorithm)
3.9 期望-最大化 (EM) 算法(The Expectation-Maximisation (EM) Algorithm)
Page
Select activity 3.10 信息准则(Information Criteria)
3.10 信息准则(Information Criteria)
Page
Select activity 3.11 最近邻方法(Nearest neighbour methods)
3.11 最近邻方法(Nearest neighbour methods)
Page
Select activity 3.12 最近邻平滑(Nearest Neighbour Smoothing)
3.12 最近邻平滑(Nearest Neighbour Smoothing)
Page
Select activity 3.13 高效距离计算:KD 树(Efficient Distance Computations: the KD-Tree)
3.13 高效距离计算:KD 树(Efficient Distance Computations: the KD-Tree)
Page
Select activity 3.14 距离度量(Distance Measures)
3.14 距离度量(Distance Measures)
Page